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Introduction 
The Sub-Saharan region of Africa has many endemic diseases 

including malaria and HIV, which are two of the deadliest diseases of 
our time [1]. The geographic overlap of these diseases (Figures 1 and 2) 
in Sub-Saharan Africa facilitates co-infections with HIV and malaria 
[2]. Since both diseases are endemic and the length of infection for both 
diseases can be several years, the burden of co-infection is a real and 
pressing problem. 

Malaria is an old disease that was first studied by Ross in the late 
1800’s [3,4]. Despite over 100 years of study and advanced biological, 
medical, and mathematical understanding, we have yet to come to a 
viable solution for this disease that has already killed hundreds of 
millions of individuals. HIV/AIDS, by contrast, is a relatively new 
disease that has only been studied since the 1980’s. Like malaria, HIV 
has received considerable attention from the scientific community and 
continues to kill millions while we search for a cure. While AIDS (last 
HIV stage) is characterized by the process of opportunistic infections, 
malaria is not typical in this regard. The co-infection between HIV/
AIDS and malaria is not well understood. It is our hope that through 
our model the joint effects of co-infections are better understood. 

The prevalence of HIV in the Sub-Saharan region is less than 20% 
for all countries except Botswana, Lesotho, and Swaziland. Malaria 
increases the viral load in HIV patients but this effect may be reversed 
with malaria treatment [1] and on the other hand, HIV increases the 
risk to be infected by malaria because of the weakness of the immune 
system [5]. Because of the increase in viral loads in HIV patients from 
malaria, HIV transmission is thought to become twice as likely to be 
passed on to a noninfected individual [2]. 

In this study we propose a mathematical model for the joint 
dynamics of HIV and malaria co-infections. Our model is given by a set 

of six differential equations (which we later reduce to four). The details 
of the co-infection are very complicated, yet, we have managed to model 
the effects of co-infections in a simple setting (a detailed discussion 
is deferred to Section 2). The remainder of the paper is organized as 
follows: below we give a brief discussion of HIV/AIDS and malaria. 
In Section 2 we analyze the stability of our model and find the basic 
reproductive number of our model, using the next generator operator 
approach. In Section 3, we discuss some simplifying assumptions, 
reduce our model to a system of four equations, and carry out the 
corresponding stability analysis. In Section 4, we examine the model 
in the absence of malaria and also in the absence of HIV. In Section 
5, we discuss our conclusions, list avenues for potential future work. 
Finally we include mathematical derivations of 0R  and Matlab code in 
the Appendix. 

HIV/AIDS

HIV has killed an estimated 25 million individuals worldwide [6]. 
Since it was discoveredin 1981, HIV has become one of the leading 
causes of death, globally, affecting mostlyimpoverished people already 
suffering from poor nutrition and health [2]. HIV standsfor human 

Abstract
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Figure 1: Global Prevalence of HIV according to WHO in 2009 [12].
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Figure 2: Global Prevalence of Malaria according to WHO in 2012 [10]. 
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immunodeficiency virus; it is a virus that attacks the immune system. 
WhileHIV does not kill, it causes the immune system to become 
defenseless against otheropportunistic diseases it could normally fight 
off. An estimated 25 million people areinfected with HIV each year in 
Africa [2].

Malaria

According to the CDC, malaria was first discovered centuries ago 
by the Chinese in 2700 BC. However it was in the late 1800’s when Ross 
made his ground breaking discoveries that led to our understanding 
of the mechanics behind malaria infection [7]. Malaria is a mosquito 
borne disease and kills about 1 to 2 million people a year, of which 
most are children [8]. If left untreated malaria attacks the liver and 
moves through the bloodstream infecting every organ it can until the 
body shuts down leading to death. In Africa an estimated 350 million 
individuals are infected with the disease [6]. Although malaria is 
treatable, the drugs can be too expensive or too difficult to distribute to 
the general public in countries where it is endemic. Like HIV it affects 
mostly impoverished people and, like HIV, it is a contributor to the 
impoverishment of many countries in Sub-Saharan Africa. 

Full Model
There are many challenges in the derivation of an HIV/malaria co-

infection model. HIV has many methods of transmission; the principles 
being: heterosexual and homosexual contact, intravenous needle 
sharing and mother to child transmission. The age group most affected 
by each method of transmission varies widely. Malaria is transmitted by 
a vector (mosquito), but the exact species varies from region to region. 
Mostly children die from malaria. For simplification we assume that 
our susceptible population is the general population that is at risk to 
getting an HIV infection at a rate proportional to the density of HIV 
infected people. Similarly, our susceptible population is also assumed to 
be at risk to get malaria at a rate proportional to the density of infected 
mosquitoes. We divide the total human population, N, into 4 different 
classes: S , represents the susceptible class; MI , represents infectious 
malaria class; HI  , represents infectious HIV class; HMI  , represents 
infectious with both HIV and malaria class; the total mosquito 
population, VN  , is divided into 2 different classes: V , represents the 
susceptible vector class; and VI  , represents the infectious vector class. 

It is known that there is an incubation period for malaria [6], but 
since we are interested in long term dynamics we ignore any latent or 
exposed classes. We also assume the total vector population is constant, 
but since death is a major concern for people infected with HIV or 
malaria, we do include disease induced mortality for people. Thus, the 

human population is not assumed to be constant, in fact Malawi has 
an estimated growth rate of 2.76 percent. Instead we assume a constant 
recruitment rate in the S class. We also assume susceptible people 
cannot simultaneously get infected with malaria and HIV since the 
transmission mechanics are completely different for the two diseases. 
To get to the HMI  class a person must first enter either the HI  or the 

MI class. However, a person in the HMI class can transmit both diseases. 
Furthermore, since a person’s immune system is compromised, that 
person has a higher probability of transmission given a “contact” has 
occurred. Here a “contact” is any process that can transmit an infection. 
We model this with an amplification factor iρ , where i  depend on 
classes involved in the transmission.

We arrive at the following system of equations for the Full Model: 
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Where parameter definitions are given in Table 1, note that the rates 
relating to the hu man population have been rescaled by the initial total 
population for numerical stability (Figure 3). 

Local stability of the full model 

The disease free equilibrium (DFE) is straight forward to calculate 
by setting the infectious classes ( ), , ,M H HM VI I I I  equal to zero: 

( , , , , , ) ,0,0,0, ,0o o o o o o
M H HM V VDFE S I I I V I N

α
∧ = =  

 
This implies that the population, in the absence of diseases, will 

reach a demographic equilibrium. It remains to study the stability of 
this equilibrium point.

The basic reproductive number represents the average number 
of secondary infections caused by a “typical” infectious individual 
in a mostly susceptible population. It is the threshold parameter that 
usually determines the stability of the DFE. We use the next generation 
operator approach [9] to arrive at the following 

0R
{ }0 0 0max ,H MR R R=

where

Mµ

Parameter Definition Malawi Sub-Saharan
Africa

Ref

Λ
0R

MVβ

VMβ

γ
k
N

Hµ

Vµ

HMµ

α
1,2,3,4iρ =

Human recruitment rate
Effective contact rate for HIV infection
Rate of infection of people infected by mosquitoes
Rate of humans which become infected following the bite of an bite of an infectious mosquitoes
Per capita recovery rate for humans from Malaria
Reduction factor of the recovery rate for Malaria HIV co-infection
Total Population of Humans
Rate of mortality of humans infected with HIV
Rate of mortality of humans infected with Malaria
Rate of mortality of humans infected with HIV and Malaria
Vector daily natural mortality rate
Per capita mortality rate of humans
Amplification Factor

0.00039
0.0005
0.003
0.12

0.00001
1
2
12800000
2.3 × 10-4

3.454 × 10-4

1.4 × 10-3

0.1429-0.0714
6.0883 × 10-5

4,4,4,4

0.00038
0.0005
0.12
0.003
0.00001
1
2
767000000
2.3 ×10-4

3.354×10-3

1.4 × 10-3

0.167
5.7078 × 10-5

4,4,4,4

Approx
Approx
Approx
Approx
Approx
Approx

[11]
[11]
[10]

Approx
[6,10]
[11]

Approx

Table 1: Parameter Definitions.
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A formal proof is deferred to the Appendix. OHR  represents the rate 
at which HIV is transmitted ( )Hβ times the average time spent in the 
HIV class 1

H aµ
 
 + 

. OMR , represents the square root of the transmission 
rate from human to vector ( )MVβ times the average time spent in the 
infectious vector class 1

Vµ
 
 
 

times the transmission rate from vector 
to human ( )VMβ  times the average time spent in the infectious malaria 
class 1

Mµ γ α
 
 + + 

. There is a square root in this term because malaria is a 
two-stepprocess; meaning for an infected individual to infect another 
individual a mosquito must transmit the disease.

We then arrive at the following theorem: If R0< 1, the DFE is locally 
asymptotically stable. The DFE of the Full Model is unstable if R0> 1 see 
Appendix for a proof.

We remind the reader that our goal is to understand the dynamics 
of HIV and malaria co-infections using the simplest possible model. 
While R0 gives us insight, physical intuition, and the numerical 
solutions indicate there should be a Co-Infection Equilibrium (CE). 
Unfortunately, our model is too complicated to arrive at an explicit 
solution for the CE. Previous work [6] and numerical solution (Figure 
4) pose a possible answer: the mosquito population is on a fast time 
scale relative to the dynamics of the human population. We use this 
difference in time scale to simplify our model.

Reduced Model
We reduce our full model to a system of 4 nonlinear equations as 

follows: First we note that the birth rate going into the vector classes 
is equal to the mortality rate going out of them, that is the total vector 
population is constant. Hence, we set V VV N I= − . Furthermore, we 
assume that the vector dynamics are fast relative to the human dynamics, 
allowing us to make the pseudo steady state approximation. That is we 
assume that the vector system is at a steady state and substitute for V 
to get: 

* 4

4
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MV M MV HM V

N I II
I I N
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β ρ β µ
+

=
+ +

Where *VI is the equilibrium value of the VI class, this is simply 
a rational function of MI

 and HMI  . Using the fact that the vector 
dynamics go a lot faster than human dynamics lead to the following 
reduced model (Figure 5): 
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Local stability of the reduced model 

The Disease Free Equilibrium of the Reduced Model (DFER) can be 
derived from the DFE and carries the analogous interpretation.

0 0 0 0( , , , ) ,0,0,0M H HMDFER S I I I
α
∧ = =  

 

Similar the stability analysis and R0 calculations follow directly 
from that of the Full Model. 
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Figure 3: Full Model. Note there are two modes of transmission from the 
classes IM to IHM ,S to IH , and V to IV .
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Where OHR  and OMR  have the same biological interpretations as 
before. It was our hope that the reduced model would lend itself to an 
analytical calculation of the coexistence equilibrium point. However, 
even with the use of a computer algebra system we were unable to get 
an analytical form for it. Instead we employ numerical solutions and 
single disease models to gain insight into our problem of co-infection. 

Single Disease Vs Co-Infection 
To evaluate the effects of co-infection in our model we look at the 

case of only a single disease for comparison. The HIV only model is 
a simple SI model obtained by setting the infectious malaria classes (

,M HMI I and VI  ) to zero. The dynamics of this model are known, the DFE 
is stable when R0H < 1 and there is a stable HIV only endemic equilibrium 
when R0H > 1 [9]. Figure 6 is the phase portrait of the HIV only model 
with the parameters from Malawi. Similarly the malaria only model is 
obtained by setting HI and HMI to zero. It is a vector-host SI model with 
essentially the same dynamics as the SI model. Figure 7 shows the phase 
portrait of the malaria only model with the parameters from Malawi. 

Comparison with co-infection: mortality 
HIV Insite estimates that additional mortality due to co-infection 

may increase by less than 5 percent to 118 percent. Figure 8 compares 
the total deaths calculated from that HIV only model, malaria only 
model, and Full Model. These deaths are calculated with varying ρ  
where iρ ρ=  for i =1, 2, 3, 4, we make the assumption that all the ( ) 'i sρ  
are equal for simplicity. Since the HIV and malaria only models do not 
have any co-infections, they are constant with respect to ρ . With ρ  = 
1 (there is no additional infectivity due to co-infection) the increased 
deaths due to co-infection was approximately 3 percent and with ρ  at 
approximately thirty, the number of deaths double, agreeing with the 
HIV Insite estimate. 

Since it is not known what the additional infectivity due to co-
infection is, we plotted the diseases induced deaths VSρ  in Figure 
9. For ρ small there was very little increased mortality, but if ρ  was 
larger than 25 then co-infection deaths dominate total deaths. 

Sensitivity analysis 

Getting reliable data is a ubiquitous problem in mathematical 
biology. While we were able to find many of the parameters in Table 
1, some parameters were estimated. Thus we would hope our estimate 
of R0 is not very sensitive to parameter values. We perform a sensitivity 
analysis on R0 with respect to our parameters [10]. The sensitivity index 
S is defined as: 
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where P is the parameter of interest. 

The sensitivity index is a local estimate of the best way to reduce 
R0. The larger magnitude of the sensitivity index, the more “sensitive” 
R0 is with respect to that parameter. For example if we know R0 is 
dominated by HIV infection, then a 10 percent decrease in the 
transmission rate corresponds, roughly, to a 10 percent decrease in 
R0. However a 10 percent decrease in the death rate corresponds to a 
7 percent increase in R0 for Malawi and an 8 percent increase for Sub-
Saharan Africa. Then we are interested in the indices with the largest 
magnitude, thus if R0 is dominated by R0H , we want to control Hβ  . 
On the other hand, if R0 is dominated by R0M , then we want to control 

, ,VM MVβ β or Vµ . 

Conclusion
A model for the co-infection of HIV and malaria was constructed 

and analyzed. We started with a simple system of six equations 
which we reduced to four. We observed it was not necessary to 
explicitly model the vector population to capture the dynamics of 
co-infection. Although there is an increase in mortality due to co-
infection, this increase is not pronounced until the amplification 
factor is approximately 25. In fact, if we assume there is no additional 
infectivity due to co-infection, the increased mortality is only 3 
percent. However, the mortality nearly doubles when the increased 
infectivity is 30. The biological integrations between the malaria 
parasite and HIV are not fully understood, but it is conceivable that 
the parasite or viral load can increase by an order of magnitude due 
to co-infection. Future studies should include fitting parameters to 
data. An investigation of the co-infection at a cellular level would also 
be interesting. In our framework we did not include treatment for 
simplicity, but treatment is a major component of any approach to a 
solution of the HIV and malaria epidemics. 

A Calculation of R
0

The next generation operator method is a systematic way to calculate 
R0 [11]. R0 is defined as the spectral radius of the next generation 
matrix. First we separate the classes into two groups, infectious and 
non-infectious. Vector  f is composed of the new infection terms of the 
infectious classes. 
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The vector   is composed of the remaining terms of the infectious 
classes.
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Fand Vare the Jacobians of  f and V with respect to the infectious 
classes, respectively. Then the next generation matrix is defined as 1V F−

evaluated at the DFE, and R0 is the dominant eigenvalue of this matrix 
(Table 2).
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For the Reduced Model we have
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Then the next generation matrix is
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