A Simple HPLC Method for the Separation of Colistimethate Sodium and Colistin Sulphate

Ligai Bai1,2, Zhengyue Ma1,2, Gengliang Yang1,2*, Jing Yang1,2, Jia Cheng1,2

1Key Laboratory of Pharmaceutical Quality Control of Hebei Province, China
2College of Pharmacy, Hebei University, Baoding, Hebei, 071002, China

Abstract

In this paper, a simple high-performance liquid chromatography (HPLC) method for the determination of colistimethate sodium in the productions of synthesis from colistin E sulphate was established. An HPLC gradient method was developed, which was able to separate 20% B+80% A changed to 50% B+50% A in 10 min. A was 0.05% TFA aqueous solution and B was acetonitrile. The separation was realized in 8 minutes. Moreover, this method was also used in the separation of colistin sulphate with good resolution. Compared to the methods reported previously, the present method was finished easier in a much shorter time which is 6 min. LC-MS was used to detect colistin sulphate and the result showed that the two compositions were colistin sulphate E1 and E2 as expected. Good separation and reproducibility were obtained.

Keywords: Colistimethate sodium; HPLC; Gradient; Colistin sulphate

Introduction

Colistin, also known as polymyxin E, a polymyxin antibiotic, comprised of colistin E1 and colistin E2, has good inhibitory effect for pathogen infection [1,2]. The characteristic lariat structure of colistin E1 was proven necessary for antimicrobial activity [3]. Since the sulfate polymyxin compounds were separated from different types of bacillus polymyx in 1947, they have been tested by vitro experiments. In Paeruginosa, it has been proven that high-level resistance can arise from adaptation in the presence of colistin E2 in vitro [4,5]. There is cross-resistance between colistin E1 and colistin E2 [6]. However, its application has not been popularized because of its toxicity and other side effects. But the toxicity and side effects of colistimethate sodium (CMS) will be depressed without drug action diminishing. Colistimethate sodium is synthesized by treating the primary amine groups of the α,γ-diaminobutyric acid residues in colistin with formaldehyde followed by sodium bisulphite [7]. There are two main compositions in the product which are colistimethate sodium E1 (CMS E1) and colistimethate sodium E2 (CMS E2). The structures of colistin sulphate and CMS are shown in Figure 1.

The studies of colistin in separation and determination are less than that in pharmacodynamics, especially as compared to CMS. There are several HPLC methods for the separation of colistimethate sodium reported previously [8,9] in which the retention time of the colistin was more than 12 min. But for the determination of CMS, there has no direct HPLC method till now, while the usual analytical method is the microbiological assay. Jian Li etc. [10] separated the CMS in plasma and urine in conjunction with HPLC by hydrolyzing CMS using sulfuric acid. This method was very cumbersome and time consuming (retention time were 14 min and 12 min for colistin E1 and colistin E2, respectively). There is no HPLC method for direct determination of CMS reported, and HPLC method is not found in European Pharmacopoeia or in American Pharmacopeia. The present paper has developed a simple HPLC/LC-MS method for the separation of colistimethate sodium and colistin sulphate.

Materials and Methods

Chemicals

Colistin sulphate was purchased from Zhejiang Qianjiang Biochemical Co. Ltd. Colistimethate sodium was synthesized by treating the primary amine groups of the α,γ-diaminobutyric acid residues in colistin with formaldehyde followed by sodium bisulphite in our lab. Standard preparation of colistimethate sodium was purchased from USP Rockville. MD. LOT, NO 1147009. Acetonitrile and trifluoroacetic acid (TFA) were purchased from Kemio Chemical Reagent Co. Ltd. All these chemicals were analytical reagent grade except for the chromatographic grade acetonitrile. Triply distilled water was used for all experiments.

HPLC and LC-MS conditions

HPLC and LC-MS instrument: An 1100 HPLC system from Agilent Technologies (Shanghai, China) consisted of a quaternary pump with an online vacuum degasser, an autosampler with variable injection capacity from 0.1 μL to 100 μL and an UV detector was applied to chromatographic studies. A LC/MSD Trap XCT instrument with electrospray ionization (ESI) source which was bought from Agilent Technologies (Shanghai, China) was used.

Chromatographic separations of colistin sulphate and colistimethate sodium were achieved on the C18 column (Optimapak, 150 mm × 4.6 mm i.d.). All these chemicals were analytical reagent grade except for the chromatographic grade acetonitrile. Triply distilled water was used for all experiments.

HPLC procedure: 5 mg of colistin sulphate and colistimethate sodium were weighted separately and solved in 2.0 mL of 0.05% TFA

*Corresponding author: Gengliang Yang, Pharmaceutical Sciences College of Hebei University, Baoding, Hebei-071002, China, Tel: +86 312 5079788, Fax: +86 312 5971107, E-mail: ygl@hbu.edu.cn

Received December 27, 2010; Accepted February 09, 2011; Published February 12, 2011


Copyright: © 2011 Bai L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
aqueous solution, and then diluted with 8.0 mL of acetonitrile to get the concentration of 0.5 mg/mL, respectively. 5 μL of the samples were injected into the HPLC system, respectively. The chromatographic separation was performed using a linear gradient (20% B (acetonitrile) +80% a (0.05% TFA aqueous solution) changed to 50% B+50% an in 10 min).

This procedure was repeated 7 times to obtain the RSD of retention times, resolution, symmetry factor and theoretical plates.

LC-MS experiment

The LC/MSD Trap XCT ion trap mass spectrometer (Agilent technology, America) was equipped with an electrospray (ESI) source with a nebulizer spacer. The ESI settings were a capillary voltage of 3500V; a drying gas flow of 8 L/min at a temperature of 350°C, and a nebulizer pressure of 25 psi. The trap parameters were set at a smart nebulizer spacer. The ESI settings were a capillary voltage of 3.051, resolution: 1.365 symmetry factor: 0.996 theoretical plate: 4068.

Colistin sulphate which was prepared in section 2.2.2 was diluted to 5 μg/mL. The mobile phase which was used in this section was the mixture of A (0.05% TFA aqueous solution), B (acetonitrile) and C (3% ammonia aqueous solution). The gradient was: 19.5% B + 77.5% A + 3% C changed to 48.5% B + 48.5% A + 3% C in 10 min.

Results and Discussion

Selection of mobile phase

In general, mobile phase that was used in the separation of colistin are usually acetonitrile and aqueous solution. Acetonitrile, methanol and avantin were also tested as mobile phase (B). Ion pair agents, for example, TFA, tetrabutylammonium bromide, 1-dodecanesulfonate acid sodium salt were tested as mobile phase (A) to mix with organic solvent (B) to separate the samples.

According to the results, a mixture of acetonitrile and TFA aqueous solution could lead to a good separation. Therefore, the mixture of acetonitrile and TFA aqueous solution was selected as the mobile phase.

When 30% B+70% A were used as mobile phase, there was no chromatographic peak obtained. When 35% B+65% A were used as the mobile phase, the retention time of CMS E1 was 2.152 min which is too short to get baseline separation with other peaks. Therefore, gradient elution was studied and the results were shown in Table 1. Moreover, the concentration of TFA in the water was studied and its optimal concentration was 0.05%.

The results in Table 1 showed the condition 3 was the best chromatographic condition for separation of colistimethate sodium. This gradient was also used to separate colistin sulphate, and good resolution (1.61) was obtained in a short time which was 6 min.

The RSD (n=7) of retention time and resolution were 0.02%, respectively. RSD (n=7) of symmetry factor and theoretical plates are 0.01%, respectively. Good reproducibility was obtained.

Chromatograms of the samples

Chromatograms of colistin sulphate and colistimethate sodium under the optimizing condition were shown in Figure 2. The chromatogram of colistimethate sodium was compared with the chromatogram of standard preparation and the second peak was CMS E1.

The LC-MS spectra of colistin sulphate

The colistin sulphate was also detected with LC-MS under the condition which was demonstrated in section 2.3. The spectra were shown in Figure 3. According to the results can we know that there were two components in the sample which were colistin sulphate E1 ((M+2H)²⁺=585.5) and colistin sulphate E2 ((M+2H)²⁺=578.5). The results of Figure 3 confirmed that the present method was a simple and rapid method to separate colistin sulphate from the mixture of the sulphates of polypeptides which produced by certain strains of Bacillus polymyxa var. colistinus or obtained by any other means.
Conclusion

A very simple HPLC method for the separation of colistin sulphate and colistimethate sodium was established successfully. Gradient mode was used in this work to separate colistimethate sodium and colistin sulphate within 8 min. For CMS, this method can be used to separate the analogs of colistin sulphate and colistimethate sodium.

Acknowledgments

The authors are grateful for financial support by the National Natural Science Foundation of China (Grant Nos. 20375010, 20675084) and Hebei Province Programs for Science and Technology Development (Grant Nos. 06276479B and 07276407D).

References


