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Editorial Open Access

Unmeasured confounding is widely recognized as one of the 
principal problems faced by investigators conducting observational 
studies. Several sensitivity analysis techniques have been developed to 
handle unmeasured confounding [1-5]. Recently, VanderWeele and 
Arah [5] provided a general class of formulas for sensitivity analysis 
of unmeasured confounding. Their formulas benefit from the fact that 
they do not presuppose that any particular method is used to yield 
the initial estimate adjusted only for measured confounders. Three 
major methods to yield such an initial estimate are reviewed in the 
appendix. In this editorial, we describe a simple sensitivity analysis 
method that retains the advantages described above. The method has 
further advantages that there is only one sensitivity parameter and 
therefore the results can easily be displayed graphically, and computer 
programs to yield the initial estimate adjusted only for the measured 
confounders can be used for the sensitivity analysis without additional 
programming.

We assume that the potential outcome Ya for an individual does not 
depend on the exposure status of other individuals. This assumption 
is sometimes referred to as the no-interference assumption [7]. 
Furthermore, we require the consistency assumption YA = Y, i.e., the 
value of Y that would have been observed if A had been set to its actual 
value is equal to the actually observed value of Y. Therefore, the only 
potential outcome for an individual that we observe is the potential 
outcome YA, i.e., the value of Y that would have been observed if A was 
set to its actual value. Finally, we suppose that the effect of A on Y is 
unconfounded given both X and U; in a counterfactual notation, Ya is 
independent of A conditional on X and U.

To propose sensitivity analysis formulas of unmeasured 
confounding for difference measures, we apply the sensitivity 
parameter introduced by Brumback et al. [2], originally presented in 
the context of the inverse probability weighting approach [8]. This is 
represented by the following formula:

a a aE(Y | A 1, X x) E(Y | A 0, X x)δ ≡ = = − = = ,

in the unexposed group in the stratum with x. There is no confounding 
when δa = 0.

Let  ∆̂+
, 

1∆̂  , and 0∆̂  denote the average outcome differences adjusted 
only for X when the target populations are the total, exposed, and 
unexposed groups, respectively. Then, using the sensitivity parameter 
δa, the causal effects for the difference measures can be expressed 
as follows: For the causal effect with the total group as the target 
population,

1 0
ˆE(Y ) E(Y ) ∆ δ+− = − ,

where δ = δ1Pr(A = 0) + δ0Pr(A = 1) is a weighted mean of δ0 and δ1; for 
the exposed group,

1 0 1 0
ˆE(Y | A 1) E(Y | A 1) ∆ δ= − = = − ;

and for the unexposed group,

1 0 0 1
ˆE(Y | A 0) E(Y | A 0) ∆ δ= − = = − .

Note that δ takes a value between δ0 and δ1.

These sensitivity analysis formulas indicate that the causal effects 
for the difference measures can simply be expressed as the difference 
between the initial estimate and a sensitivity parameter, and thus we 
can easily conduct a sensitivity analysis. The sensitivity parameter δ 
(δ0 or δ1) is set by the investigator according to what is thought to be 
plausible. The parameter can be varied over a range of plausible values 
to examine how conclusions vary according to different parameter 
values. To obtain the confidence intervals of the true causal effect for 
the fixed values of δ (δ0 or δ1), δ (δ0 or δ1) can be simply subtracted 
from the upper and lower confidence limits for the average outcome 
difference. Therefore, we can readily display the results of sensitivity 
analysis graphically, where the horizontal line represents the sensitivity 
parameter and the vertical line represents the true causal effect. 
However, for the total group as the target population, because δ 
depends on Pr(A = a), strictly, the variance of this probability should 
be taken into account to obtain the confidence intervals.

If we are sure that the individuals in the exposed group tend to have 
larger values than those in the unexposed group in the stratum with x, 
i.e., E(Ya | A = 1, X = x) ≥ E(Ya | A = 0, X = x), it would be assumed that
δa ≥ 0. Conversely, if we are sure that E(Ya | A = 1, X = x) ≤ E(Ya | A
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We use the following notation. Let A denote the exposure status 
of a particular individual. Suppose that A is dichotomous (A = 1 if 
exposed and A = 0 if unexposed). Let Y be the observed outcome of that 
individual. Let X denote a measured confounder or a set of measured 
confounders, and U denote an unmeasured confounder or a set of 
unmeasured confounders. We also consider the potential outcomes 
(or counterfactual) framework [6]. Let Ya denote the potential outcome 
of Y for an individual if the exposure A, perhaps contrary to fact, had 
been set to value a. Using this notation, the causal effects with the 
total, exposed (A = 1), and unexposed (A = 0) groups as the target 
populations are provided by a comparison between E(Y1) and E(Y0), 
between E(Y1 | A = 1) and E(Y0 | A = 1), and between E(Y1 | A = 0) and 
E(Y0 | A = 0), respectively.

where it is assumed that the value of δa does not vary between the strata 
of X. When δa > 0, E(Ya | A = 1, X = x) > E(Ya | A = 0, X = x), meaning 
that the individuals in the exposed group tend to have larger values 
than those in the unexposed group in the stratum with x. Conversely, 
when δa < 0, E(Ya | A = 1, X = x) < E(Ya | A = 0, X = x), meaning that the 
individuals in the exposed group tend to have smaller values than those 
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= 0, X = x), it would be assumed that δa ≤ 0. Note that E(Ya | A = 1, X 
= x) ≥ E(Ya | A = 0, X = x) holds when both relationships between the 
unmeasured confounder-outcome and the unmeasured confounder-
exposure are positive or negative in the stratum with x [9,10]. The 
reverse results are obtained when one of the relationships is positive 
and the other is negative. The other assumptions to derive a range of 
the sensitivity parameter are found elsewhere [11].

The above sensitivity analysis formulas for difference measures can 
be straightforwardly extended to ratio measures. Here, we assume that 
the outcome is binary; i.e., E(Y | A = a) = Pr(Y = 1 | A = a) and E(Ya) 
= Pr(Ya = 1). To propose the sensitivity analysis formulas for ratio 
measures, we introduce the following sensitivity parameter [4] instead 
of δa,:

a a aE(Y | A 1, X x) / E(Y | A 0, X x)γ ≡ = = = = ,

where it is assumed that the value of γa, similar to δa, does not vary 
between the strata of X. Whether the value of γa is greater or less than 
1 is interpreted in a similar manner to whether, the value of δa is larger 
or smaller than 0.

Let  ˆ
+Γ , Γ̂1, and Γ̂0 denote the average outcome ratios adjusted only 

for X when the target populations are the total, exposed, and unexposed 
groups, respectively. Then, using the sensitivity parameter γa, the causal 
effects for the ratio measures can be expressed as the ratio between the 
initial estimate and a sensitivity parameter. The formulas are follows: 
For the causal effect with the total group as the target population,

1 0
ˆ(Y ) (Y ) γ+= ΓE E ,

where

0 x

x

x
1

x

( A 0) (Y | A 0) ( A 1) (Y | A 0, X x) ( X x | A 1)
( A 0) (Y | A 0) ( A 1) (Y | A 0, X x) ( X x | A 1)

;
( A 0) (Y | A 1, X x) ( X x | A 0) ( A 1) (Y | A 1)

( A 0) (Y | A 1, X x) ( X x | A 0) ( A 1) (Y | A 1)

γ

γ

γ

= = + = = = = =

= = + = = = = =
=

=
= = = = + = =

= = = = = + = =

∑
∑

∑
∑

Pr E Pr E Pr
Pr E Pr E Pr
Pr E Pr Pr E

Pr E Pr Pr E

						                 (1)
for the exposed group,

1 0 1 0
ˆ(Y | A 1) (Y | A 1) γ= = = ΓE E ;

and for the unexposed group,

1 0 0 1
ˆ(Y | A 0) (Y | A 0) γ= = = ΓE E .

While the sensitivity analysis formulas for the exposed and 
unexposed groups are simple, the formula for the total group is 
complex and causes problems for the interpretation. However, when 
both γ0 and γ1 are greater (less) than 1, γ is also greater (less) than 1 and 
takes a value between the values of γ0 and γ1.

A sensitivity analysis for ratio measures can also be conducted 
easily, and the procedure is identical to that for difference measures. 
Using the log scale to obtain the confidence intervals of the true causal 
effect, a sensitivity parameter can be simply subtracted from the upper 
and lower confidence limits for the initial estimate. However, for the 
total group as the target population, strictly, the variances of estimators 
in (1) should be taken into account and it is troublesome to obtain the 
confidence intervals.

In this editorial, we have described a simple method for sensitivity 
analysis of unmeasured confounding in three target populations: total, 
exposed, and unexposed groups. The method can also be applied to 
the attributable fraction [12]. While the method described here has 
advantages mentioned at the beginning, it has a disadvantage that 
we need a strong assumption that the values of γa and γa do not vary 
between the strata of X. This assumption may not be reasonable in 
many actual studies. However, it is troublesome to set each value of the 
sensitivity parameters within each stratum of X, and further somewhat 
complex programming will be required to conduct a sensitivity analysis. 
In addition, the result of a sensitivity analysis with this assumption may 
not be largely different from that without the assumption, although the 
former always has the narrower confidence intervals than the latter.

Sensitivity analysis will aid in exploration of the potential impact 
of unmeasured confounding. We recommend performing a sensitivity 
analysis to evaluate the influence of unmeasured confounders on study 
results.

Target popula-
tion

Average potential 
outcome

Approach
Model-based standardization Inverse probability weighting Doubly robust estimation

Total
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i
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∑
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Table 1: The estimators from the model-based standardization approach, inverse probability weighting approach, and doubly robust estimation.
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Appendix: Adjustment for Measured Confounding
We here introduce three approaches to adjust for the measured 

confounders: the model-based standardization approach, the Inverse 
Probability Weighting (IPW) approach, and the Doubly Robust 
(DR) estimation. The estimators from these three approaches are 
summarized in Table 1. In this table, i = 1, …, n denotes an individual 
and n is the total number; n1 and n0 are the number of individuals in 
the exposed and unexposed groups, respectively. E(Y | A = 1) and E(Y 
| A = 0) are the average outcomes for individuals in the exposed and 
unexposed groups, respectively.

The model-based standardization approach specifies a single model 
in which we simultaneously estimate the exposure-outcome association 
and the confounder-outcome association as follows:

0 1 2 1 k 1 k(Y | A, X) A X ... Xα α α α += + + + +E  ,

where (α0, …, αk+1) is a set of regression parameters and can be estimated 
using standard software. Using this regression model, the expectations 
of the potential outcomes can be estimated as shown in Table 1, where 

0 1 2 1, 1 ,ˆ ˆ ˆ ˆ(1) ...α α α α += + + + +i i k k im x x  is the predicted outcome given A = 1 
for an individual i and 0 2 1, 1 ,ˆ ˆ ˆ(0) ...α α α += + + +i i k k im x x  is the predicted 
outcome given A = 0 for the individual i.

Rather than adjusting for the association between confounders 
and the outcome, we can control for confounding using the propensity 
score, which is defined as the conditional probability of exposure given 
confounders [13]. The propensity score is typically estimated from the 
observed data with a model such as the following:

 0 1 1 k k( A 1 | X) ( X ... X )β β β= = + + +Pr expit ,

where expit(s) = exp(s)/{1 + exp(s)}, and where (β0, …, βk) is a 
set of regression parameters that can be estimated by standard 
software. Using this regression model, the IPW approach estimates 
the expectations of the potential outcomes as in Table 1, where 

1 1, ,expit( ... )β β β
∧ ∧ ∧

= + + + ki i k ip x x [8]. Note that Sato and Matsuyama 
[14] exemplified an SAS code to yield the IPW estimate using the
marginal structural model.

The DR estimation requires specification of two regression models 
for the outcome and exposure as a function of confounders. Having 
estimated mi(a) and pi, we combine these values as in Table 1 to calculate 
the DR estimates. These expressions suggest an intuitive explanation of 
the properties of DR. The formulas of the left hand side indicate that 
the DR estimators are equivalent to the unbiased estimators from the 
IPW approach if the exposure regression model is correctly specified. 
Likewise, the formulas of the right hand side indicate that the DR 
estimators are equivalent to the unbiased estimators from the model-
based standardization approach if the outcome regression model is 
correctly specified. Note that Funk et al. [15] presented an SAS macro to 
yield the DR estimate with the total group as the target population.
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