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Introduction
Heart rate is a standard cardiac measure that is non-invasive, 

inexpensive, and relatively simple to acquire. The variations in heart rate 
are of great interest to physicians and researchers because they capture 
valuable information from both the sympathetic and parasympathetic 
branches of the autonomic nervous system [1]. High variability in heart 
rate has been associated with signs of good adaptability, indicating 
a healthy individual with well-functioning autonomic control, 
whereas lower variability typically suggests abnormal or insufficient 
adaptability, indicative of some physiological malfunction [2]. One 
standard measure used to assess heart rate variability (HRV) is the 
RR-interval. The RR-interval quantifies the variations in heart rate by 
measuring the time, typically in milliseconds, between successive “R” 
peaks in a sinus rhythm, as shown in Figure 1.

A great deal of progress has been made in the field of HRV; 
however, it has mainly focused on measuring HRV, with little emphasis 
on modeling the measures of HRV [3]. The statistical measures used, 
such as the mean RR-interval and the standard deviation of the beat-to-
beat RR-intervals, are primarily descriptive and may not characterize 
and utilize the true nature of the distribution of the data. The focus of 
this article is in developing methods to model the RR-interval lengths 
and other data that have similar within-subject characteristics. Several 
studies have reported that RR-interval data exhibit a two-component 
normal-mixture distribution in both healthy and diseased populations 
and that the usual assumption of normality is often inadequate [4-9]. 
These studies also provide some scientific rationale for the normal-
mixture distribution. For instance, the respiratory sinus arrhythmia 
(RSA) could explain the two-component normal-mixture distributions; 

the heart rate has been shown to increase and decrease during the 
inspiration and expiration phases of a breathing cycle, respectively 
[10,11].

Developing a mixed-effects model that could appropriately handle 
the mixture distributions of the RR-intervals was primarily motivated 
by three examples. The first example is a study involving a sample of 
adult, sedated and ventilated inpatients recorded for periods of up 
to 24 hours [12]. The primary aim was to characterize the effect of 
level of sedation on a variety of physiological and comfort measures, 
including RR-intervals. The second example is a sample of preterm 
infants recorded during several bottle feeding sessions, lasting up to 15 
minutes each [13]. The goal was to predict bottle feeding readiness, in 
part, by understanding the effect of feeding on HRV. The third example 
is a study examining undergraduate college students during baseline, 
preparation, and delivery of several psychological stressor tasks [14]. 
In all of these examples, the data comprised of repeated measures of 
RR-intervals within each subject along with a variety of additional 
within and between subject characteristics. A common theme in these 
studies was the desire to identify the factors influencing the variations 
in RR-interval lengths. The methods proposed in this article focus on 
modeling these types of data under a within-subject normal-mixture 
assumption with mixed-effects modeling strategies. The method will be 
illustrated using the psychological stressor data [14].

In the literature, there is extensive research for mixed-effects models 
with the assumption of a normal-mixture distribution for the random 
between-subject effects. These do not capture the appropriate mixture 
of the normal-distributions for the within-subject effects relevant 
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Abstract
 Data on Heart Rate Variability (HRV) have been used extensively to indirectly assess the autonomic control of the 

heart. The distributions of HRV measures, such as the RR-interval, are not necessarily normally distributed and current 
methodology does not typically incorporate this characteristic. In this article, a mixed-effects modeling approach under 
the assumption of a two-component normal-mixture distribution for the within-subject observations has been proposed. 
Estimation of the parameters of the model was performed through an application of the EM algorithm, which is different 
from the traditional EM application for the normal-mixture methods. An application of this method was illustrated and the 
results from a simulation study were discussed. Differences among other methods were also reviewed.
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Figure 1: Normal Sinus Rhythm.
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to the examples discussed above. For instance, Xu and Hedeker [15] 
and Verbeke and Molenberghs [16] propose a mixed-effects model, 
where the random-effects are assumed to be normal-mixture while the 
residuals are assumed to be normally distributed. Moreover, in both 
of these approaches, the mixture components of the normal-mixture 
distributions are assumed to have the same variance-covariance 
matrices. In this article, a new formulation is proposed. This method 
is specific to within-subject normal-mixture distributions and allows 
for the mixture components to each have distinct variance-covariance 
matrices. When the mixture component variance-covariance matrices 
are assumed to be equal, the joint distributions in the new formulation 
is equivalent to the previous formulations [15,16], however, the 
posterior distributions are entirely different. Consequently, hypothesis 
tests regarding the random-effects are also different. As will be 
shown, this formulation proposed in this article also lends itself to a 
straightforward application of the EM algorithm, which eliminates the 
need for numerical integrations for obtaining the marginal likelihood. 
This approach also differs from Ng et al. [17] who consider normal-
mixture for the marginal distributions in mixed-effects models and 
apply the EM algorithm. This difference will be further discussed in a 
subsequent section.

Materials and Methods 
Within-subjects normal-mixture mixed-effects model

For simplicity, the model described here is for a two-component 
normal-mixture model with mixed-effects (MXME):

( )1 2= + + −Y Z X Xβ Λ α Ι Λ α + ε 			                      (1)

where Y is an N×1 vector of observed responses, β is the q×1 vector of 
random-effects, Z is the N×q observed design matrix corresponding 
to the random-effects, α1 and α2 are the p×1 vectors of fixed-effects 
parameters for the two components, X is the known N×p observed 
design matrix corresponding to p-1 fixed-effects and an intercept, 
and ε is the N×1 vector of residuals. Here, N is the total number of 
observations from s subjects. The vector of random-effects, β, is 
assumed to follow a q-variate normal distribution with mean vector 
0 and variance-covariance matrix G. The error vector, ε, is assumed 
to follow a joint normal-mixture density with two N×1 mean vectors, 
0 and 0, two N×N variance-covariance matrices 1Σ and 2Σ , for 
the two components, respectively. Finally, Λ, is an N dimensional 
block diagonal matrix of the mixture proportions with the jth block 
represented by ( ), , ,λ λ λ=j j j jdiag Λ  and I is the N dimensional 
identity matrix. Generalizations of this model to more than two 
components are straightforward.

Suppose ε  follows normal-mixture with mean ( )Λ α Λ α1 2X + I - X  
with component means 1αX  and 2αX  but has the same component 
variance-covariance matrices as that of the residuals, ε, in (1). Suppose  
nj (for j = 1,...,s), denotes the number of observations from the jth 
subject such that 

1=
=∑ s

jj
N n . For subject j, the density, φJMX , of jε , 

is distributed as a two-component joint normal-mixture distribution:

( ) ( ) ( ) ( )1 2 1 2 1 1 2 2; , , , , ; , 1 ; , ,φ λ λ φ λ φ= + −JMX j j j j j j j j j j j jX X  ε α α Σ Σ ε α Σ ε α Σ

						                    (2)
where ( ); ,φ j j k kjXε α Σ  represents the nj dimensional multivariate 
normal density for k = 1, 2. Here, Xj  is an  nj×p dimensional design 
matrix with identical rows and kjΣ  is the corresponding  nj×nj variance-
covariance matrix for the kth component (k = 1, 2).

The expected value of the vector jε , is  ( )E =jε 1λ +j jX α ( ) 21 λ− j jX α  and 
the variance is ( ) 1 2 1 2 1 2V (1 ) (1 )( )( )λ λ λ λ ′= + − + − − −j j j j j j j j j j jX X X Xε Σ Σ α α α α . 

Then, assuming independence among subjects, the joint density of ε is,

( ) ( )1 2 1 2 1 2 1 2
1

; , , , , ; , , , ,φ φ λ
=

=∏
s

JMX JMX j j j j
j

X X ε α α Σ Σ Λ ε α α Σ Σ .

The expected value of ε, in matrix notation, is 

( ) ( )1 2E = + −X Xε Λ α Ι Λ α , where I is an N-dimensional identity matrix 
and ( )1 2, ,...,= sdiagΛ Λ Λ Λ . The variance-covariance matrix ε is 

( )1 2, ,...,= sdiagΣ Σ Σ Σ .

Estimation of the model parameters
For estimating the parameters, the marginal likelihood is given by 

the density of Y. This could be derived in the usual way by obtaining 
the joint density of Y and β, and integrating it with respect to β. That is,

( ) ( ) ( ) ( )1 2 1 2, , , , , ; |
∞

−∞

= = ∫L f f f dG y y yα α Σ Σ Λ β β β.	               (3)

However, this does not lead to a closed form expression and 
involves the product of indefinite integrals. To obtain the maximum 
likelihood estimates (MLEs), (3) has to be maximized with respect to the 
various parameters. This requires the MLEs to be obtained iteratively 
through a numerical algorithm that includes numerical integrations. 
Alternatively, an application of the EM algorithm eliminates the need 
for a numerical approach.

The maximum likelihood estimation of parameters and the use of 
the EM algorithm for the normal-mixture models have been extensively 
studied in the literature [17-19]. The EM algorithm is adapted in the 
current context in such a way that the existing software for fitting 
mixed-effects models (such as PROC MIXED or PROC GLIMMIX in 
SAS) could be used. This makes our approach easy to implement. In 
normal-mixture models, there is a natural choice of the “incomplete” 
data. These are defined by an indicator variable, cij, which designate 
each observation into one of the two components of the mixture 
normal with a certain probability. That is,

 
th th1, if the  observation for the  subject is from the first component

0,  otherwise
= 


ij
i jc .

In the E-step, the missing data is represented by the probability of 
the ith observation from the jth subject falling into the first component. 
That is,

( ) ( )
( ) ( )

2
1 1

2 2
1 1 2 2

; ,
1

; , (1 ) ; ,

λ φ ε µ σ
ε ε π

λ φ ε µ σ λ φ ε µ σ
  = = = =  + −

j ij ij
ij ij ij ij ij

j ij ij j ij ij

E c P c  .

To implement the M-step, most of the current methods (e.g., [17]) 
divide the data into components of the mixture normal by strictly 
assigning an observation to the component that has the maximum 
expected probability. In the approach proposed here, rather than 
separating the data into distinct components, the probabilities are 
assigned to each observation weighting the observation appropriately 
into each component. That is, weights,  wijk, are assigned as

1

1

,
π π

λ
π

=

= =

∑

ij ij
ij n j

j j
ij

i

w
n  

and 2 11= −ij ijw w . The denominator in the above equation equals 
the expected proportion of the observations that fall into the first 
component for the jth subject. By definition, for each subject within a 
component, the wijk will sum to one.

In the M-step, the likelihoods for the weighted observations are 
then used, along with the distribution of the random-effects, to obtain 
the overall MLEs for the joint MXME using standard mixed-effects 
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model theory. That is, after determining the kth component weight 
matrix for the jth subject, ( )1 ,...,=jk jk n jkjdiag w wW , across all j and k, the 
mixed-effects model is fitted to the weighted data, * 1/2=k kY W Y ,

* * * *= + +kk kY Z Xβ α ε .				                     (4)

The weighted residuals, *ε , follow an N-dimensional multivariate 
normal distribution, with mean 0 and variance-covariance matrix  

1 2 1 2* =k kk kW WΣ Σ , where ( )1 , ,=k k skdiagW W W . Here, one could use 
any standard software (e.g., PROC MIXED or PROC GLIMMIX in 
SAS) to fit the models. However, for each component an estimate of the 
mixed-effects covariance matrix, G, is produced. A consistent estimator 
for G is based on the weighted average of the predicted random effects. 
That is,

( ) ( ) ( )* *

1

1ˆ ˆ ˆ
1 =

′= − −
− ∑

s

j j
js

G β β β β ,			                   (5)

where ( )* *
1 2

ˆ ˆ ˆ ˆ ˆ1λ λ= + −j j j j jβ β β , is the weighted average of the predicted 

random effects from the M-steps of each component, weighted by the 
component proportions. Here, β  denotes the mean of the ˆ

jβ ’s and  are 

1
ˆ (1/ )λ π

=
= ∑n j

j j ijin the MLEs for the subject mixture proportions.

Summary of the EM algorithm for the two-component MXME
For the first (t = 1) iteration:

•	 First M-step: The MLEs for the component means, ( )1
kα , and 

component variances, (1)
kΣ , are obtained by fitting the two 

mixed-effects models separately. An estimate for the overall 
random-effects variance-covariance is obtained by substituting 
the predicted random-effects into (5). The updated estimate 
of the mixture proportion from the jth subject is estimated by 

(1) (1)
1

ˆ (1/ )λ π
=

= ∑n j
j j ijin .

For the (t+1)th iteration:

•	 E-step: Compute ( )1π +t
ij  using the values ( ) ( ) ( )2, ,σt t t

k kΛ α   
obtained in the tth M-step. Then determine the component 
weight matrices, ( )1+t

kW . Compute the two sets of weighted 
observations, *( 1)+t

kY , for k = 1, 2.

•	 M-step: Same as the M-step described above using the  (t+1)th 
iteration predicted values of the random-effects.

The process is iterated until the desired level of convergence is 
achieved. 

The model fitting could proceed in the usual way using likelihood 
ratio tests (for nested models) or using information criteria (such as 
the AIC, BIC, etc.). Whether or not a mixture model is necessary could 
be examined only by comparing the information criteria because the 
normal model is not nested within the mixture model. In this article 
the methods are described for a two-component mixture, but the 
extensions to three or more components is straight forward. However, 
the number of components has to be fixed (assumed to be known). 
In application, when the number of components is unknown, theory 
based research and preliminary exploratory analysis of the data (within 

each subject) should be assessed for the best choice for the fixed number 
of components.

Comparison to other methods using mixture normality in 
mixed-effects models

As pointed out in the introduction, in order to capture the within-
subject mixture normality, the formulation in equation (1) is necessary. 
After some algebra, under the formulation in (1), it can be shown that 
the posterior mean for the jth individual is:

 
( )

( ) ( )

1

1 1

1

2 21

λ

λ

−

−

  ′ ′ = = + −  

′ ′ + − + − 

j j j j j j j j j

j j j j j j

E Y y GZ Z GZ y X

GZ Z GZ y X

β Σ α

Σ α

The between-subject normal-mixture model proposed by Verbeke 
and Molenberghs [16], (equation (1)), assumes the random-effects to 
follow a normal-mixture distribution. Our formulation differs from 
this in three aspects. First, while the joint distributions (the integrand 
in equation (3)) have similar configuration in the two formulations, 
the posterior mean is different from the equation above. The posterior 
means in Verbeke and Molenberghs [16] and the one under model 
(1) (shown above) would be equivalent only when the normal-
mixture distribution is the special case of the normal distribution. In 
other words, if and only if, 2

1 2 σ= = IΣ Σ  and 1 2=α α  (or 1 2=µ µ  
in Verbeke and Molenberghs [16]). Second, the between-subjects 
normal-mixture model does not lend itself to the application of the 
EM algorithm. Therefore computation of the marginal likelihoods 
using numerical methods becomes inevitable. Finally, the previous 
formulations assume the normal-mixture components to have the 
same variance covariance matrices. The formulation proposed in (1) 
does not require this assumption, which provides greater flexibility.

Ng et al. [17] also proposed a mixed-effects model with a normal-
mixture distribution and applied the EM algorithm for obtaining 
the MLEs of the model parameters. There are two main differences 
between their approach and the one proposed here. Their model 
formulation is theoretically different from our formulation, as well as 
the two mentioned above. By assuming the marginal distribution to be 
a normal-mixture, the formulation neither fits into the normal-mixture 
for the between-subjects effects nor for the within-subject observations. 
In [15] and [20] or our formulations, the marginal distributions do 
not have a closed form solution. Therefore, Ng et al.’s model [17] is 
not directly applicable to the example presented here. Moreover, 
they assume independence for the residuals, which is somewhat 
restrictive. The second difference is with respect to the application of 
the EM algorithm. Their approach is to estimate the probabilities of 
an observation belonging to the various components and assign them 
to the component that has the largest probability. This could lead to 
an ambiguity. For instance, if the two component probabilities for a 
given observation are 0.51 and 0.49 assigning that observation to either 
component seems inappropriate. However, their approach will assign 
the observation strictly to the component with probability 0.51. In 
our method this ambiguity is avoided, because instead of allocating 
the observation “outright” to one of the components, we use the 
probabilities as weights, thereby using all of the information available.

Results
Description of the physiological stressor task data

In this section, the method proposed is applied to heart rate (RR-
interval) data obtained from adults during physiological stressor tasks. 
The RR-interval data were collected from nine healthy undergraduate 

•	 Initial values for E-step: Starting values for 
( ) ( ) ( ) ( )0 0 0 0, , , andk GΛ α Σ  are specified. The ( )1π ij  are computed 

using these starting values. The weight matrices, ( )1
kW , are 

constructed from the ( )1π ij . Using these component weight 

matrices, two sets of weighted observations, ( )1*
kY  (k = 1, 2), are 

created.
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students at the General Research Center at Ohio State University. 
During the study, several cardiovascular and psychosocial measures 
were recorded. The ECG was consistently recorded while each subject 
performed one of six psychosocial stressor tasks. The psychosocial 
stressor tasks include five speech related tasks and one verbal mental 
arithmetic task, assigned in a random order to each subject. The mental 
arithmetic task (MA) had four minutes of baseline and four minutes 
of task. The “Saab” (BS) speech task had four minutes of baseline, two 
minutes of preparation, and two minutes of delivery. The remaining 
four speech tasks, “why I’m likeable” (LS), “ask for date” (AS), “describe 
way to school” (WS), and “describe inanimate objects in room” (IS), 
each had two minutes of baseline, two minutes of preparation, and 
two minutes of delivery. A total of 32 minutes of ECG data from each 
subject was available for the data analysis. Each analog ECG signal, for 
every minute, and from every subject, was first acquired at 1000 Hz 
then decimated to 500 Hz. Next, the ECG data was carefully edited and 
checked for any artifacts. The R-peaks were identified using waveform 
matching templates and then a time/amplitude criterion. Once the 
R-peaks had been identified, the RR-interval series was calculated using 
the time between successive R-peaks. For further details see Mandrekar 
[9]. In the original analysis [9], each subject’s data were analyzed 
separately, mainly to illustrate the inadequacy of a normal model and 
to suggest that a normal-mixture model might be more appropriate. 
Here, we use these all of the subject’s data to fit a single model that 
accounts for the repeated measures on each subject and simultaneously 
include fixed effects (age, gender, and the type of task).

Prior to fitting the model, several data cleaning steps were 
administered. A total of 588 RR-intervals (out of 20,416), were 
identified as artifacts and subsequently excluded from the analysis 
due to missed or spurious beats. An interval was considered an 
artifact if it was “large” or “small” in relation to all the other intervals 
for that subject during the specified task and period combination, 
and in relation to the intervals surrounding the artifact. On average 
2.88% of the data from each subject was identified as artifacts. After 
excluding artifacts, the data were de-trended in order to remove the 
ultra-low frequency trends and to reduce some of the non-stationarity, 
as suggested by Litvack et al. [11]. This was accomplished by fitting 
first-order polynomials to the series of RR-intervals obtained from 
each subject, for each combination of task and period. The de-trended, 
artifact free data (rescaled by a factor of 10) was used in the subsequent 
analysis.

Estimation of the model
The EM algorithm described previously was implemented with a 

SAS macro using the PROC IML and PROC MIXED in SAS v.9. The 
PROC IML code was primarily used for the E-Step and the PROC 
MIXED was called repeatedly within this code for the EM iterations. 
In this application, the within-subject residuals were assumed to 
be independent. The degrees of freedom in MIXED procedure were 
appropriately adjusted using the DDFM statement. The specific 
hypotheses tested are representative of typical research questions that 
may be of interest: 

1.	 Do the demographic variables have significant effects on RR-
intervals?

2.	 Is the mixture proportion different across the subjects?

3.	 Do task and period have significant effects on heart rate? If so, is 
the period effect consistent across the tasks? 

4.	 Is there significant subject to subject variability in the heart rate?

5.	 Are the estimates of the within-subject variance-covariances 
different across the components?

The estimated mixture proportions ranged from 0.3809 to 0.5628 
across the nine subjects, with standard errors (SEs) ranging from 0.0082 
to 0.1022. To test if there were differences among mixture proportions 
across the subjects, a model with a single mixture proportion for all 
nine subjects was fitted and the corresponding estimate of the overall 
mixture proportion was ˆ 0.4796λ =   (SE = 0.0030). A eight degrees of 
freedom likelihood ratio chi-square test comparing this reduced model 
to the full model was not statistically significant ( 2

8 2.63χ = , p-value 
= 0.96). This test was performed under a full fixed-effects model. 
For subsequent analyses, the models were fit with a single mixture 
proportion. Table 1 shows the likelihood ratio tests for the fixed-effects.

The estimates and standard errors for the variance components 
along with 95% Wald confidence intervals are given in Table 2. The first 
two rows correspond to the residual variances of the first and second 
components and the last row represents the variance for the random 
subject effects (i.e. the between subject variability).

The least squares (LS) means and standard errors for the 
combinations of task and period effects were computed at the mean age 
(19) for each component. The component LS means are shown in Table 
3.The LS means for the normal-mixture distribution (combining both 
components) could be computed as ( )1 2

ˆ ˆˆ ˆ ˆ1µ λµ λ µ+ −fuv fuv fuv= , where 
gender is denoted by f, task is denoted by u, and period is denoted by v. 

The component LS means, shown in Figure 2, at an average age of 
19.22, are plotted separately for males (panel 3a and 3c) and females 
(panels 3b and 3d) across each period, baseline (B), preparation (P), 
and delivery (D), with a separate line for each of the five tasks.

The main results and conclusions are as follows:

•	 A normal-mixture model with two-components with the same 
mixture proportion across the subjects fits the data adequately. As 
suggested in the Introduction, the means of the two components 
might represent the mean increase and decrease in the heart rate 
during the inspiration and expiration phased of a breathing cycle 
due to respiratory sinus arrhythmia, respectively. The cardiac 
parasympathetic nerve is minimized during inspiration, leading 
to shorter RR-interval lengths, while the cardiac parasympathetic 
nerve is maximized during expiration, leading to longer RR-
intervals [10].

•	 The heart rate measures vary significantly across the demographic 
variables, age and gender. While this is consistent with previous 
research, the approach proposed here provides additional 
information regarding how these demographic characteristics 
perform with respect to each of the two components and 
regarding the variability associated with each component. If the 
two components actually represent inspiration and expiration, 
the proposed model could be used to better examine how the 
demographic variables are associates with each phase. On average, 
the RR-interval length increases (i.e., heart rate decreases) about 

Effect Removed - 2 Log Likelihood Difference DF p-value
- 146772.50 - - -

Age 146780.13 7.63 2 0.0220
Gender 146922.06 149.56 2 <0.0001

Task × Period 148038.12 1265.62 16 <0.0001

DF = Degrees of Freedom

Table 1: Likelihood Ratio Tests for Fixed Effects.
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First Component Second Component

Fixed-Effects Parameters 2ˆ fuvα
 (SE)

Intercept 68.08 (0.174) 89.93 (0.149)
Age (1 year increase) 1.23 (0.037) 1.10 (0.040)
Female (vs. Males) 2.67 (0.121) 1.60 (0.132)
AS (vs. WS) -0.24 (0.201) -2.50 (0.179)
BS (vs. WS) 9.04 (0.209) 3.92 (0.194)
IS (vs. WS) 8.16 (0.211) 2.42 (0.184)
LS (vs. WS) 5.55 (0.204) -0.63 (0.189)
Baseline (vs. Preparation) 10.54 (0.209) 7.94 (0.191)
Delivery (vs. Preparation -0.85 (0.201) -5.34 (0.187)
AS (vs. WS) × 
Baseline (vs. Preparation) -1.65 (0.295) -0.91 (0.265)

AS (vs. WS) × 
Delivery (vs. Preparation) -4.3598 (0.2739) -2.0977 (0.2731)

BS (vs. WS) × 
Baseline (vs. Preparation) -5.8747 (0.2693) -3.3277 (0.2628)

BS (vs. WS) × 
Delivery (vs. Preparation) -10.5592 (0.2726) -3.0973 (0.2883)

IS (vs. WS) × 
Baseline (vs. Preparation) -9.6416 (0.2853) -4.6925 (0.2737)

IS (vs. WS) × 
Delivery (vs. Preparation) -5.6413 (0.2786) -0.6369 (0.2711)

LS (vs. WS) × 
Baseline (vs. Preparation) -5.9216 (0.2824) -1.6392 (0.2756)

LS (vs. WS) × 
Delivery (vs. Preparation) -8.9997 (0.2738) -0.7912 (0.2740)

12 and 11 milliseconds, for the first (inspiration) and second 
(expiration) components, respectively, with each year increase 
in age. Also, females had greater interval lengths than males by 
an average of 27 and 16 milliseconds, for the first and second 
components, respectively.

•	 The model produced two distinct variance estimates for the two 
components, namely 2

1σ̂  = 22.6 (95% CI = 22.19, 23.08) and  2
2σ̂  

= 24.13 (95% CI = 23.66, 24.61). Examining the overlap in the 
CIs is indicative of the statistically significant differences in the 
variances of the two components (i.e., between the inspiration 
and expiration phases).

•	 The task by period interaction was also significant. However, the 
magnitude of the interaction for the first component (inspiration) 
was consistently higher than the second component, assuming 
a mean age of 19 and regardless of gender (Table 3, Figure 2). 
In general, the RR-interval lengths decreased from baseline 
to preparation to delivery. However, this decrease was not 
consistent across tasks. The IS and WS tasks exhibited quadratic 
trends. The IS RR-interval lengths increased from baseline to 
preparation but decreased at delivery, while the WS lengths 
decreased from baseline to preparation but increase at delivery. 
The lengths of all other tasks tended to decrease gradually from 
baseline to preparation to delivery.

•	 A random subject-effect for the HRV varied from subject to 
subject ( 2ˆδσ  = 11.2, 95% CI = 5.5, 34.1).

Discussion
The use of the mixed-effects model is a valuable tool for modeling 

HRV type data. However, the current framework does not adequately 
address the issues of non-normality observed within-subjects. The 
HRV data measured by the RR-interval lengths tend to follow a two-
component normal-mixture distribution. To accommodate this, a 
two-component MXME with normal random-effects seems to fit the 
data well. Under this framework, use of the EM solution to estimate 
the model parameters was proposed in this article. Although the EM 
solution has been applied for the estimation of parameters in normal-
mixture distributions, its application to the mixed-effects situation is 
novel. Furthermore, in contrast with the traditional methods, where the 
normal-mixture is assumed for the between-subject random-effects, 
the proposed method is specific to the within-subject non-normality. 
The within-subjects normal-mixture lends itself to the application of 
the EM algorithm and provides a much simpler posterior mean. By 
defining the incomplete data in terms of the weights of each observation 
belonging to one of the two components, the estimation could be 
carried out using existing mixed-effects methodology and software, as 
was demonstrated here with PROC IML and PROC MIXED in SAS.

The within-subject mixture models approach proposed here is more 

applicable than the widely studied between-subject mixture models. 
The model also could provide alternative clinical interpretations 
than the time and frequency domain approaches. In the application 
presented here, the two-component normal-mixture model was 
interpreted to be representative of the inspiration and expiration phases 

Variance Parameter Estimate SE 95% Confidence Interval

ˆ2
1σ 22.628 0.227 (22.189, 23.081)

ˆ2
2σ 24.127 0.242 (23.659, 24.609)

ˆ2σδ 11.180 4.969 (5.478, 34.127)

SE = Standard Error

Table 2: Estimates of the Variance Components.

SE = standard error

Table 3: Least Squares Means and Standard Errors by Component under a 
Reference Cell Parameterization.
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of the breathing cycle. However, this is simply a conjecture that needs 
to be further examined and other possible interpretations should be 
explored, perhaps in consultation with the scientists in the HRV field. 
In situations where data on when inspiration and expiration phases 
occur is available along with the RR-interval data, one could compare 
the fit of the model proposed here with known phases to determine 
how well the model fits the RSA theory. In other types of HRV data, the 
components of the mixture could have other interpretations in HRV 
as well as outside of HRV. For example, if data are observed over a 
24 hour period, the two dominating components might represent the 
circadian rhythm. Finally, there may be a need for fitting mixtures with 
more than two components and the proposed approach would easily 
extend for those situations.

To study the characteristics of the proposed method, a Monte-
Carlo simulation study was also performed [21]. In this study, the 
mixture proportion, between-subject variability, number of subjects, 
number of observations within each subject, and the percentage of 
overlap in the two component distributions were allowed to vary. For 
each combination of these factors, 100 simulations were performed 
and the proposed MXME was applied. The bias and the mean squared 
error (MSE) of the estimates of the model parameters were computed. 
In order to study the characteristics of the method a (single replicate) 
full-factorial analysis was performed using absolute bias and MSE as 
the outcome variables. The results suggest that the method reproduces 
the mixture proportions the best and reproduces the between subject 
variance the least accurately, when the sample size is small. However, 
when the number of subjects increased from 5 subjects to 20, this 
estimation improves dramatically. The EM algorithm always converged 
to the global maxima and was found to be insensitive to the initial 
values.

The main advantage of the modeling is that it utilizes all of the data, 
thereby capturing information about within subject correlations, and 
allows for the researchers to include covariates in the model that may 
be associated with HRV (e.g. gender, age, etc.). Because this approach 
is shifting the paradigm from one that relies on the summary statistics 
such as the time and frequency domain measures (which have been 
well understood and utilized by the clinical researchers in the field) to 
modeling, the burden of interpreting the models and translating the 
results to the clinician rests on the statistician. Continued dialogue 
between the statistician and the clinician regarding the modeling 
approach could achieve this goal.
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