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Introduction 
The mammary gland undergoes a dynamic series of alterations in its 

architecture and morphology during normal development as well as the 
development of breast cancer [1-4]. Understanding which alterations 
in the tissue architecture accompany the development of breast cancer 
is likely to improve the early detection and ultimately, the treatment 
of patients. The mammary gland is made up of two components, the 
epithelial parenchyma, and the surrounding stroma which contains 
a variety of cell types including, the extracellular matrix, fibroblasts, 
resident macrophages, and adipocytes [1-4]. Breast cancer is thought to 
occur initially in mammary epithelial cells (MECs) [1-2]. While MECs 
that harbor mutations can often initiate breast tumorigenesis, studies 
have shown that the stromal microenvironment surrounding MECs can 
play a major role in tumor cell fate [5]. Remarkably, studies have shown 
that this tissue environment can act as both a barrier to tumorigenesis 
by suppressing tumor growth or it can act as a permissive environment 
for tumor growth promoting MECs towards transformation and a 
malignant state [5].

Compositionally, adipose tissue is the major contributor to 
the volume of the breast. Two types of adipose tissue have been 
distinguished histologically and functionally [6,7]. White adipose 
tissue (WAT) is composed of cells with a single (unilocular) large lipid 
droplet that is stored and used as fuel for the organism [6,7]. In contrast, 
brown adipose tissue (BAT) is composed of cells with numerous 
(multilocular) small lipid droplets with capillaries that weave through 
individual brown adipocytes to facilitate the burning of lipids for heat 
production [6,7]. In the breast, WAT is seen continuously from birth to 
adult, whereas BAT often has a temporal appearance [8,9]. Insights into 
the contribution of BAT in mammary gland and the regulation of its 
temporal appearance are rather limited. 

Two independent studies in mice have demonstrated the presence 
of BAT during the early stages of mammary gland development [8,9]. 
In the mouse, multilocular brown adipocytes are detectable in the 
mammary fat pad from birth until about 8-10 weeks of age (near the 
completion of puberty) [8,9]. The disappearance of these multilocular 
cells after puberty also correlates with the loss of the uncoupling 
protein 1 (UCP1), an uncoupling protein found in the mitochondria 
of BAT [8,9]. Considering that high amounts of brown adipocytes 
are exclusively detected during the early stages of mammary gland 
development, one can speculate that BAT may play a specific role in 
mammary ductal outgrowth. Supporting this hypothesis are historical 
mammary gland transplantation experiments that demonstrate that 
interscapular BAT can be used as a matrix to regenerate a branching 
system of ducts from explants of rodent mammary ducts [10]. 

We have previously utilized a preclinical mouse model of 
BRCA1-associated breast cancer in several studies to determine how 
exogenous factors alter the onset of mammary preneoplasia and tumor 
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Abstract
A major challenge to breast cancer research is the identification of alterations in the architecture and 

composition of the breast that are associated with breast cancer progression. The aim of the present investigation 
was to characterize the mammary adipose phenotype from Brca1 mutant mice in the expectation that this would 
shed light on the role of the mammary tissue environment in the early stages of breast tumorigenesis. We observed 
that histological sections of mammary tissue from adult Brca1 mutant mice abnormally display small, multilocular 
adipocytes that are reminiscent of brown adipose tissue (BAT) as compared to wildtype mice. Using a marker for 
BAT, the uncoupling protein 1 (UCP1), we demonstrated that these multilocular adipose regions in Brca1 mutant 
mice stain positive for UCP1. Transcriptionally, UCP1 mRNA levels in the Brca1 mutant mice were elevated greater 
than 50-fold compared to age-matched mammary glands from wildtype mice. Indeed, BAT has characteristics that 
are favorable for tumor growth, including high vascularity. Therefore, we also demonstrated that the multilocular 
brown adipose phenotype in the mammary fat pad of Brca1 mutant mice displayed regions of increased vascularity 
as evidenced by a significant increase in the protein expression of CD31, a marker for angiogenesis. This Brca1 
mutant mouse model should provide a physiologically relevant context to determine whether brown adipose tissue 
can play a role in breast cancer development.  
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development [11-13]. Women with inherited mutations in the Breast 
Cancer Susceptibility gene-1 (BRCA1) gene have an increased risk of 
developing breast cancer [14]. Similar to human BRCA1-mutated breast 
cancers, the mammary tumors developed in these mice are classified as 
high-grade undifferentiated adenocarcinomas, demonstrate loss of p53 
function, and are ERα negative [15-18]. In the course of our studies, we 
observed that postpubertal Brca1 mutant mice displayed an unexpected 
sustained mammary adipose histology of small multilocular adipocytes 
that was reminiscent of brown adipose tissue (BAT) as compared to 
wildtype mice. Notably, BAT has characteristics that are also favorable 
for tumor growth, including increased vascularity [6,7]. Therefore, 
the aim of the present investigation was to characterize the mammary 
adipose phenotype in the mammary gland of the Brca1 mutant mice in 
the expectation that this would shed light on the role of the mammary 
tissue environment in the early stages of breast tumorigenesis.

Materials and Methods
Mice and, genotyping

Brca1 conditional knockout mice with two floxed Brca1 alleles 
(Brca1f/f) carrying the mouse mammary tumor virus (MMTV)-Cre 
recombinase gene (Brca1f/f; MMTV-Cre) were maintained on a C57Bl/6 
genetic background (n=20) [15]. Non-transgenic C57Bl/6 mice were 
used as controls (n=20). Mice were maintained in temperature-
controlled and light-controlled conditions in the University of 
Maryland, Baltimore animal facility. All mice were maintained in 
accordance with institutional guidelines approved by the University 
of Maryland, Baltimore Animal Care and Use Committee. Water was 
supplied from sterile plastic water packs. A rodent diet (Harlan Teklad 
Global 2019; Madison, WI) was supplied ad libitum. The presence or 
absence of the floxed Brca1 alleles, of wild-type Brca1 alleles, and of 
the MMTV-Cre was identified using polymerase chain reaction (PCR) 
on tail DNA as described previously [15,19]. Fourth mammary glands 
were surgically removed at necropsy and processed for a whole mount 
analysis or formalin fixed for histology, immunohistochemistry (IHC), 
and western blot analysis.

Mammary gland whole mounted analysis, histological 
studies, and immunohistochemistry 

One #4 mammary gland from each animal was dissected and 
spread on a glass slide at the time of necropsy for whole mount analyses 
as previously described [11-13]. The other #4 mammary gland from 
each mouse was fixed in 10% buffered formalin (Fisher Scientific, 
Pittsburgh, PA) overnight at 4ºC and embedded in paraffin using 
standard techniques. Five micron sections were cut for hematoxylin 
and eosin (H&E) staining and IHC detection was performed using 
methods described previously [11-13] using goat anti-UCP1 polyclonal 
antibody (sc-6528 Santa Cruz Biotechnology, Santa Cruz, CA) and rat 
monoclonal to CD31 (ab7388, Abcam, San Francisco, CA). Digital 
photographs were taken using a Nikon 50i Upright Microscope System 
with a high Resolution 5 Megapixel Color Digital Camera system 
(Nikon Instruments Inc., Melville, NY, USA).

RNA isolation and QPCR

Total RNA was isolated from mammary glands using the Qiagen 
Lipid RNA Easy kit (Qiagen, Valencia CA) and quantified on a 
NanoDrop ND-1000 Spectrophotometer. Messenger RNA (mRNA) 
was reverse transcribed (RT reaction) into cDNA (1 h at 37°C, 

Programmable Thermal Controller, MJ Research, Cambridge, MA). 
Real-time PCR probes were purchased from Roche (Roche Applied 
Science, Indianapolis, IN). All real-time PCR was performed using 
RNA samples from three separate mice. The oligonucleotide primers 
used were as follows: UCP1 upstream: ggcctctacgactcagtcca; UCP1 
downstream: taagccggctgagatcttgt. The upstream and downstream 
oligonuclotide primers were chosen on both sides of an intron to 
prevent amplification of possible contaminating gemonmic DNA. 
mRNA quantities were normalized against 18s as an endogenous 
control for each sample. 

Immunoblot analysis of mammary tissue

Frozen mammary glands were homogenized in protein lysis buffer 
to extract whole proteins as described [11]. Protein concentration was 
quantified using the bicinchoninic protein assay (Pierce, Rockford, IL, 
USA). Protein (50 µg) from each sample was solubilized in sample dilution 
buffer, separated by denaturing 4-15% NuPage gels (Invitrogen Life 
Technologies, Carlsbad, CA, USA) and electrophoretically transferred 
to polyvinylidene difluoride membranes for immunoblot analysis. 
Membranes were blocked in 5% nonfat dry milk in Tris buffered saline 
and 1% Tween (TBS-T) overnight at 4°C. Membranes were incubated 
with a 1:1000 dilution of primary antibody against rat monoclonal to 
CD31 (ab28364,Abcam, Cambridge, MA), for 1 hr at room temperature 
and washed with TBS-T. Bound antibody was detected by incubation 
with a 1:5000 dilution of a horseradish peroxidase-linked anti-rat IgG 
secondary antibody (A9037, Sigma, St. Louis, MO) for 1 hr at room 
temperature. After washing with TBS-T, immunoreactive protein was 
detected with the enhanced chemiluminescence (ECL) plus Western 
blotting detection kit (Amersham Biosciences, Piscataway, NJ, USA). 

Statistical analysis 

Statistical differences among groups were analyzed using t tests 
using GraphPad Prism (GraphPad Software, San Diego, CA). Data are 
presented as means ± S.E.M. Significance was assigned at P 0.05.

Figure 1: Brca1 mutant mice exhibit an abnormally persistent dense mam-
mary fat pad into adulthood. Representative mammary gland whole mounts 
of wildtype (a) and Brca1f/f;MMTV-Cre (b) mice at 3 weeks of age and at 6 months of 
age (c,d), respectively.  Magnification, x 1. 
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Results
Representative mammary glands from 3 week old mice demonstrate 

the presence of both WAT and BAT in the mammary gland of wildtype 
(Figure 1a) and Brca1 mutant mice (Figure 1b). After puberty, adult 
wildtype mice normally lose the BAT phenotype (Figure 1c). In 
contrast, we observed a markedly dense area in the mammary fat 
pad of all the Brca1 mutant mice analyzed (Figure 1d). As expected, 
wildtype mice histologically displayed predominantly white adipocytes 
with large, unilocular morphology (Figure 2a). In contrast, we observed 
that the dense area in the mammary fat pad of Brca1 mutant mice had 
smaller, multilocular adipocytes that are histologically reminiscent 
of BAT (Figure 2b). We found this multilocular BAT phenotype to 
be unique to the mammary fat pads of Brca1 mutant mice since we 
did not observe this phenotype in other adult wildtype mouse models 
examined (data not shown). Using a marker for BAT, UCP1, we 
demonstrated that while the mammary adipose in wildtype mice was 
negative for the UCP1 antibody staining (Figure 2c), Brca1 mutant mice 
showed positive staining in the same regions within the mammary fat 
that looked morphologically like BAT (Figure 2d). We also quantified 
UCP1 at the transcription level. Levels of a housekeeping gene (18s) 
were measured as an internal standard, and results were normalized 
to the level of the age-matched wiltype mice in each case. We observed 
that the expression of UCP1 mRNA in the Brca1 mutant mice was 
significantly greater (~50-fold) than over levels observed in the age-
matched mammary glands from wildtype mice (data not shown). 

Notably, BAT has characteristics that are also favorable for 
tumor growth, including increased vascularity. To examine whether 
the multilocular BAT phenotype in the mammary fat pad had 
characteristics of increased vascularity, we stained the mammary tissue 
with CD31, a marker commonly used to measure angiogenesis. We 
found that the regions of mammary fat pad in Brca1 mutant mice that 
was histologically reminiscent of multilocular BAT, also stained positive 

for CD31 (Figure 3b) in contrast to wildtype mice which showed 
no staining for CD31 (Figure 3a). We also observed that the protein 
expression of CD31 in the Brca1 mutant mouse mammary glands were 
2-fold greater than levels seen in the age-matched mammary glands 
from wildtype mice (Figure 4). 

Discussion
This study reports the unexpected sustained deposition of 

multilocular adipocytes in the adult mammary gland of Brca1 mutant 
mice which was not seen in other wildtype mouse models. Additionally, 
the BAT phenotype was correlated with increased angiogenesis. Indeed 
it is known that angiogenesis is an essential step for breast cancer 
progression and dissemination [20]. Given that adipose tissue is the 
major contributor to the volume of the breast, these findings raise 
questions as to whether the sustained presence of multilocular brown 
adipocytes in mammary adipose tissue can provide a permissive 
environment for tumor growth. 

The mammary gland is a unique organ which continually undergoes 
changes in growth and its architecture from birth to the adult [1-4]. 
After birth, a rudimentary ductal tree remains quiescent in the gland 
until a robust proliferative growth and branching begins at the onset of 
puberty [1-4]. This stage of rapid mammary ductal growth is carefully 
orchestrated and controlled by key hormones and growth factor signals 
(e.g. estrogen and Insulin like growth factor-1 (IGF-1) that extend the 
ductal tree [1-4]. Key structures, called terminal end buds (TEBs), are 
highly proliferative formations at the tips of the ducts that drive the 
ducts to penetrate farther into the fat pad until the end of puberty [1-
4]. At the end of puberty when ductal outgrowth is complete, the TEBs 

Figure 2: Dense staining on Brca1 mutant mouse wholemount morpholog-
ically resembles multilocular brown adipose and stains positive for UCP1.  
H & E analysis showing the mammary fat pad of wildtype (a) and Brca1f/f;MMTV-Cre 
(b) postpubertal mice (6 months of age). Immunohistochemical detection of the 
brown adipose tissue marker, UCP1 in the mammary fat pad of wildtype (c) and 
Brca1f/f;MMTV-Cre (d) mice.  Magnification, x 20.  

Figure 3: Multilocular brown adipose appearance in Brca1 mutant mice 
shows increased staining for CD31, a marker of angiogenesis. Immuno-
histochemical detection of the angiogenesis marker, CD31 in the mammary fat 
pad of wildtype (a) and Brca1f/f;MMTV-Cre (b) postpubertal mice (6 months of age). 
Magnification, x 40. Arrowheads point to areas with CD31 positive staining.   

Figure 4: Immunoblot analysis demonstrates that CD31 protein is in-
creased in Brca1 mutant mouse mammary gland. Representative protein 
lysates from mammary glands from Brca1 mutant and wildtype mice were sub-
jected to Western blotting (as described in materials and methods) to detect 
CD31 and GAPDH (control for loading and transfer). 
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normally differentiate into terminal ducts that remain quiescent until 
additional signals are received to induce a proliferative response (e.g. 
estrous cycling, pregnancy) [1-4]. The completion of ductal outgrowth 
normally coincides with the disappearance of BAT in the mammary 
fat pad [8,9]. Thus, it is not clear why the BAT phenotype abnormally 
persists in the mammary gland Brca1 mutant mice well into adulthood. 
Although, the anatomical location of depots of WAT and BAT is 
relatively distinct, studies have shown that adipose tissue has a degree of 
plasticity and can switch from WAT to BAT and vice-versa in response 
to certain endogenous and exogenous stimuli [21,22]. In the case of 
mammary adipose, the BAT phenotype is normally detected during 
puberty which is also a time when high levels of hormones and growth 
factors are also present [8,9]. Although not investigated, it is possible 
that the transient deposition of BAT in the pubertal mammary gland 
could be the result of a systemic effect driven by hormone and growth 
factor signaling (e.g. estrogen and IGF-1). This would explain why 
the disappearance of these factors after puberty leads to a mammary 
fat pad primarily composed of unilocular adipocytes [8]. Evidence 
supporting this hypothesis are experimental studies from Matsumoto 
et al. [23,24] who demonstrated in ovariectomized mice that estrogen 
and progesterone treatments can alter the deposition of unilocular and 
multilocular adipocytes in the mammary fat pad. Additionally, other 
studies demonstrated that estrogen deficiency in ovariectomized rats 
is followed by reduced UCP1 expression [25] while other studies have 
demonstrated that IGF-1 can induce UCP-1 expression in vitro and in 
vivo models [26,27]. Indeed, several lines of evidence have demonstrated 
that both experimental mouse models and humans that are deficient in 
BRCA1 have abnormally high levels of estrogen/IGF-1 signaling and 
production [28-33]. In particular, experimental and epidemiological 
studies have demonstrated that loss of BRCA1 function can lead to the 
loss of the normal restraint on estrogen receptor signaling [34-36] and 
also an increase in estrogen production through increased expression 
of aromatase, an enzyme responsible for a key step in the biosynthesis 
of estrogens [37]. Also, prior studies in the same mouse model used in 
these studies have revealed that the absence of Brca1 results in increased 
expression of several components of the IGF-1 axis in the liver, normal 
mammary tissue, and mammary tumors and increased levels of serum 
IGF-1 [28,38]. Therefore, if high levels of estrogen/IGF-1 signaling 
and production can alter the mammary stromal microenvironment 
to a phenotype that provides a permissive environment for tumor cell 
growth, this would exacerbate the known synergistic effects of estrogen/
IGF-1 to drive mammary epithelial cell growth. We are pursuing more 
mechanistic studies to determine whether the known characteristics of 
abnormal hormonal/growth factor signaling in a Brca1 deficient setting 
drives the persistent BAT phenotype in mammary adipose. 

Finally, the unexpected finding of the BAT phenotype in the 
mammary gland of Brca1 mutant mice raises an important issue 
regarding whether the BAT phenotype can also be detected in humans, 
particularly those with BRCA1 mutations. It has long been assumed 
that adults do not possess more than vestigial amounts of BAT due to 
the general contention that BAT is gradually lost postnatally when its 
specific role in adaptive thermogenesis is normally concluded [6,7]. 
However, recent morphological and imaging studies demonstrate 
that BAT is present in adults and can also be stimulated to appear 
in traditional WAT depots [6,7,39-42]. To date, there is only limited 
understanding of the distribution of WAT and BAT within the normal 
human breast. Multilocular adipocytes have been detected in the 

human infant mammary gland [43,44]. In particular, analysis of ductal 
structures from human neonates have demonstrated that these structure 
are often embedded within a connective tissue stroma and also in close 
proximity with nearby islands of multilocular, vascularized embryonic 
fat [43,44]. Additionally, there are several reports that have documented 
the observation of brown fat (hibernomas) in breast tumors [45-51]. 
Whether BRCA1 mutation carriers possess more BAT compared to 
non-BRCA1 mutations carriers remains to be determined. Notably, 
BAT is inversely correlated with obesity and body mass index (BMI) 
[52,53]. One study reporting that women with an inherited high risk of 
breast cancer often present as young and slim patients with a low BMI 
[54] supports the notion that women with inherited BRCA1 mutations 
may actually possess more BAT compared to those patients without 
mutations in Brca1. Although, a long-standing line of evidence suggests 
that mammary adipose is essential for ductal morphogenesis and breast 
cancer [55-56], one important consideration to take into account is the 
fact that there are fundamental differences in the microenvironment 
of the adult rodent and human mammary glands [55]. In particular, 
the rodent microenvironment is comprised primarily of an adipose 
stroma with epithelial parenchyma versus the human gland, which is 
composed of a fibrous–adipose stroma with epithelial parenchyma [55]. 
Taking this into consideration, it is likely that the sustained presence 
of multilocular brown adipocytes would be most relevant for invasive 
tumors that break through the basement membrane resulting in an 
immediate juxtaposition of adipocytes and breast cancer cells allowing 
paracrine interactions between the two cell types. Thus, a persistent BAT 
phenotype in mammary adipose could indeed provide a permissive 
environment for tumor growth. Our findings provide a framework 
for which to pursue mechanistic investigations regarding if/how the 
plasticity of adipose tissue can impact breast cancer development in the 
adult. This Brca1 mutant mouse model should provide a physiologically 
relevant context for these investigations.
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