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Introduction
It is quite common when attempting statistical analysis on a set of 

data that researchers run into the problem of missing or mismeasured 
observations. This is often the case in medical studies where the tests to 
get an accurate measurement may be particularly expensive or invasive 
for the patient. The medical researchers can opt to examine another 
relevant variable which may be cheaper or easier to measure, even 
if it does not provide as much information. This can be tested for in 
place of the original variable or along side when it is possible to do so. 
Researchers then have the choice to work with either a smaller sample 
size using just the samples with measurements for the variable of interest 
or to include the imperfect data in the analysis with the goal of gaining 
a higher efficiency. For example, in the Primary Biliary Cirrhosis (PBC) 
study conducted at Mayo Clinic between 1974 and 1984, Aspartate 
Aminotransferase (AST) was an important predictive variable to the 
survival time of PBC patients, which was only collected for patients 
registered to the double blind clinical trial, due to reasons similar to 
those previously mentioned. But another closely related variable, 
bilirubin, is recorded for all PBC patients [1]. In order to enhance the 
efficiency of the statistical analysis regarding the relationship between 
AST and the patients’ survival, it might be worthy to have the available 
information from all the patients included. Motivated by this example, 
in this article we propose an inferential method for this kind of survival 
data, where we replace the missing or mismeasured data using kernel 
smoothing based on an auxiliary covariate, which is measured for each 
subject.

When it is possible to have some of the desired data measured 
accurately, these cases form a validation set. The validation set contains 
measurements for both the variable of interest and the auxiliary 
covariate. The rest of the cases are placed into the non-validation 
set where only the auxiliary covariate is available. In the analysis of 
this data, if the auxiliary covariate is just the original variable with 
measurement error, one could be inclined to use it in place of the 
missing data. Unfortunately this naive method will lead to estimation 
bias for all regression coefficients in the model which, depending on the 
magnitude of the error, can be quite large [2]. Hence it is very important 
for researchers to include as many subjects as possible in their analysis, 
to aim at a higher efficiency, as well as to correct the estimation bias 
caused by measurement errors.

Much research has been done in this area in the past. Some research 
on how to incorporate missing or mismeasured data in models includes 

the works of Rubin [3], Fuller [4], Carrol et al. [5], Wang et al. [6], Meng 
and Schenker [7], Cheng and Wang [8] and Yu and Nan [9], to list a 
few. A common specific statistical model chosen for these situations 
is the Cox model [10]. For details see Cox and Oakes [11], Kalbfleisch 
and Prentice [12], Hu et al. [13] and Hu and Lin [14], among others. 
In this article however, we focus on the parametric accelerated failure 
time models. When an auxiliary covariate is included in the analysis 
through an estimated likelihood, the AFT model is more efficient if an 
appropriate distribution of the failure time is known. Research work 
based on an estimated partial likelihood function has been conducted 
by many authors such as Pepe and Flemming [15], Pepe [16], Zhou and 
Pepe [17], Zhou and Wang [18], Zhou et al. [19], Jiang and Zhou [20], 
Fan and Wang [21] and Liu et al. [22]. Recently He et al. [23] proposed 
to use SIMEX method to handle the accelerated failure time models 
when covariates are subject to measurement error. But investigation 
about the performance of accelerated failure time models with auxiliary 
covariates is still limited and deserves to be carried out, due to some 
reasons such as (1) the AFT models have direct physical interpretation, 
(2) the AFT models can better predict the survival function of a patient
and (3) the AFT models are robust to model misspecification in the
sense that ignoring a covariate will not lead to much biased estimates of
other regression coefficients [11].

The rest of this article is organized as follows. Section 2 presents the 
general accelerated failure time model and some special cases which 
we use in our calculations. Section 3 covers the estimation method. 
Section 4 discusses the asymptotic properties of our estimator. Section 
5 shows the simulation results for finite samples as well as the results 
from analyzing data from the Mayo Clinic trial in PBC. In Section 6 
we put forth our concluding remarks. Finally, we outline the regularity 
conditions and proof for the theoretical results from Section 4 in the 
Appendix.

The accelerated failure time model

Let {Xi, Zi} denote the covariate vector where Xi is the component 
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which is only observed in the validation set and Zi is the component 
that is always observed. In this case we assume that Xi is scalar and 
that Zi is a vector. For every Xi, let Wi be the corresponding auxiliary 
covariate of the form Wi = Xi + Ui where Ui is the measurement error 
incurred when attempting to observe Xi. We assume that Ui follows a 
normal distribution such that Ui

~ N(0, σu
2). Let Ti, Ci and iδ  repressent 

the ith failure time, censoring time and censoring indicator, i [ i Ci] δ Τ= Ι ≤  
We assume that out of the n subjects, the sample size for the validation 
sample where the iX 's  are correctly observed is nV and the sample 
size for the non-validation sample where we do not observe Xi’s is 

Vnv  n  n= −
. The observed data is therefore 

i i i, i i{S , , Z X ,  W }δ  
for the validation sample and i i i, i{S , , Z W }δ

 
for the non-validation 

sample, where Si = min ( )i iT ,C .

The accelerated failure time model can be expressed as

( )i i 1 i 2 i iY  log T   X   Z  ,β β ε= = + ′ +  			                  (1)

where 1 2 ( ,  )β β β′ = ′  is a vector of unknown parameters that we must 
estimate and iε  is the random error which has pdf ( )fε ε .

Note that the random error term “ in model (1) is in its general form. 
When standardized the scale parameter 1/σ  or b should be included, 
as in Lawless [24]. Also the equation (1) assumes automatically that if 
we are given (Xi, Zi), Wi gives us no additional information about the 
failure time.

The pdf ( )T i i, if t ;  ,  X Zβ of Ti depends on the form of ( )fε ε . Once 
we have ( )T i i, if t ;  ,  X Zβ , we are able to calculate the survival and 
hazard functions for failure time Ti as shown below.

( ) ( ); , , ; , ,β β
∞

= ∫
i

i i i T i it
S t X Z f m X Z dm                                            (2)

and ( ) ( ; , , ); , ,
( ; , , )

T i i i
i i i

i i i

f t X Zh t X Z
S t X Z

ββ
β

=                                                              (3)

The maximum likelihood estimator of the parameters is the 
maximizer 

( )ββ β= Argmax L

where 

( ) ( ) ( )i i1
T i i i i i i

1

f S ; ,X , Z S S ; ,X , Zβ β βδ −δ

=

=∏
i

n

L

which using (3) can be rewritten as

( ) ( ) ( )i

i i i i i i
1

h S ; ,X , Z S S ; ,X , Zβ β βδ

=

=∏
i

n

L   		               (4)

Some special cases: There are some special distributions of the 
survival time which are of specific interests to practitioners in medical 
research.

The generalized gamma distribution

We begin by demonstrating how to obtain the likelihood function 
and estimating equations for the generalized gamma distribution 
model. This is a very useful distribution. It can be reduced into the 
Weibull, exponential, or log normal models. We may write the general 
model as               

( )i i 1 i 2 i iY  log T     X  Z  V ,µ β β σ= = + + ′ +  		                 (5)

where iVσ  takes the place of εi from equation (1) and follows the 
generalized gamma distribution. The likelihood function is given as

( )
( )

( )

( )

' 2/1 221/1 '1 1 2 2
1 2

1
'

1 2 2
2

1 /
1/

1 , /1

( )

δθ
µ β β θθ σθθ

µ β β σ
σθ σ

δ

δθ θ
µ β β

σ σ

θ
θ

σθ θ

θ
θ

β

 − + + 
 

− − + + −
−

−
− + +

 
 

  
  
 Γ     

 
  
  ×=   

  

=∏

i
X Zi i

e
X Zi i ti

ii

i
X Zi i

i

t e e

I t ei

n

L
(6)

where the function  [ ]a, xI
 
is the incomplete gamma function, defined 

as

[ ] 1, .
∞

− −= ∫ a u

x

I a x u e du

So

( )
( )

'
21 2

'
1 2 2

1

2 1/ 1
2 /

1 , / .θ θ
µ β β

σ σ

δθ θ
µ β β θσ σ

θ
θ

θ
− + +

−
− + + ∞ − −

  
=  

   
∫

i

i i
X Zi i

i

X Z u
i t e

I t e u e du

A reduced case, the exponential regression model

When μ= 0, θ= 1, and σ= 1, the likelihood function (6) is reduced to

( ) ( ) ( )'' 1 21 2( )

1

exp{ }
δ β ββ ββ

− +− +

=

= −∏
i ii

ZZ
i

n

i

L e t e                                       (7)

A proportional odds model

When modeling AFTs, proportional hazards and proportional odds 
models are frequently used. The above reduced case is a proportional 
hazards model. Now let us look at the alternative. Letting μ= 0 again, 
we then let Vi in equation (5) follow the standard logistic distribution.

The likelihood function is

( ) ' '
1 2 1 2

( 1)1 11 1/ ( ) 1/ ( )

1

1 1
i i

i i i i

n
X Z X Z

i i
i

L t e t e
δ δ

σ β β σ β βσ σβ
σ

− +
− − + − +

=

   
= +   

   
∏                      (8)  

Remark 2.1 

A suitable model can be chosen by following the routine 
procedure based on the validation sample. The auxiliary information 
can be utilized based on the selected parametric model following the 
estimation method introduced in the following section.

Method of the Estimation
The regression parameters can be estimated through the use of the 

maximum likelihood method, say  ( )Argmax lββ β=  which solves the 
estimating equations   

( ) 0,l β
β

∂
=

∂
where 

( ) ( )( ) ( )( )( )1
log ; , , log ; , ,i i i i ii

n
i il h S X Z S S X Zβ δ β β

=
= +∑                             (9)

Both the hazard and survival functions depend on Xi, which is 
available only for the validation sample. The non-validation sample 
does not contain the Xi measurements. However, there is auxiliary 
information available. In order to enhance the efficiency of the data 
analysis, one should take the auxiliary variables into consideration. 
In this paper we propose to predict the unobserved iX 's  from their 
corresponding auxiliary covariates, the iW 's , by using kernel 
smoothing and then using these to estimate the hazard and survival 
functions. For details about kernel smoothing, one can see Nadaraya 
[25], Watson [26] and Wand and Jones [27]. The equation to estimate 
the unobserved Xi values is
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( )
,

( )

∈

∈

−

=
−

∑

∑



i j
jj V

i
i j

j V

W W
X k

h
W W

k
h

X                                                                                                  (10)

where k( ) is the kernel function and h is the chosen bandwidth for 
smoothing. Note that the selection of the bandwidth should be such 
that the bandwidth conditions of Theorem 1 be satisfied. Here the 
optimal bandwidth is chosen as 1/3

uh 2 nσ −= , as suggested by Zhou 
and Wang [18].

We can therefore write the estimated likelihood and estimated log-
likelihood as

( ) ( ) ( ) ( ); , , ( ; , , ) ; , , ; , , ,i i

i i i i i i i i i i i i
i V i V

EL h S X Z S S X Z h S W Z S S X Zδ δβ β β β β
∧

∧ ∧

∈ ∈

= ×∏ ∏

and 

( )( ) ( )( )

( )

log ( log ; , , log( ( ; , , )))

( log ; , , log( ( ; , , )))

β δ β β

δ β β−

∈

∧ ∧

∈

= + +

 + 
 

∑

∑

i i i i i i i
i V

i i i i i i ii V

EL h S X Z S S X Z

h S X Z S S X Z						                       (11)

where ( ); , , ; , ,ii i i i ih S X Z h S X Zβ β
∧ ∧ =  

 
 and ( ); , , ; , ,ii i i i iS S X Z S S X Zβ β

∧ ∧ =  
 

     

For our reduced case in Section 2.1.2, equation (11) becomes

( )( ) ( ) ( )'
1 2

'
1 2

1 1 11 '
1 2

11 11 '
1 2

1 1log ( log )

1 1( log )

i i

i i

X Z

i i i i i
i V

X Z

i i i i ii V

EL t X Z t e

t X Z t e

β β
σ σ σ

β β
σσ σ

β δ β β
σ σ

δ β β
σ σ

−

∧

− − +

∈

 
− +∧  −

 
∈

  
= − + −     

    − + −        

∑

∑
   (12)

and for our proportional odds example in Section 2.1.3, we have

( )( ) ( ) ( ) ( )

( )

'
1 2

'
1 2

1 1 11 '
1 2

11 11 '
1 2

1 1log ( log 1 log(1 ))

1 1( log 1 log(1 ))

i i

i i

X Z

i i i i i i
i V

X Z

ii i i i ii V

EL t X Z t e

t X Z t e

β β
σ σ σ

β β
σσ σ

β δ β β δ
σ σ

δ β β δ
σ σ

−

∧

− − +

∈

 
− +∧  −

 
∈

  
= − + − + +     

    + − + − + +        

∑

∑
						                  (13)

The estimates of the regression parameters are then the maximizers 
of the estimated log-likelihood function,

ˆ log( ( ))β ββ =EL Argmax EL
Which can be obtained by solving the estimating equations 

( ) log( ( )) 0.ββ
β

∂
= =

∂
ELU

When the unobservable Xi’s, i = 1,…, nV, are replaced using the 
proposed kernel smoothing, the unknown parameters can be estimated 
with existing programs, such as those written in R or SAS. However, the 
corresponding variance estimates are going to fail due to the estimated 
unknown Xi’s. Hence in this paper we propose to use the Newton-
Raphson algorithm to estimate the regression parameters. The variance 
and covariance matrix of the estimator can be estimated from the 
calculation process.

Remark 3.1 
1.	 The distribution of the failure time needs be specified in this 

procedure. An appropriate one can be chosen based on the 
validation sample by using the routine procedure for parametric 
model selection. See, for example, Lawless [24].

2.	 The direct imputation of the unobservable covariate with its 
kernel smoothing estimation is due to the consideration of 
model robustness. If there exists slight misspecification of the 

model, the maximum likelihood estimator of the regression 
parameters based on the kernel smoothing of unknown 
expectation in the likelihood function will be inconsistent. This 
was also observed in our simulation studies but the results will 
not be reported. 

3.	 The scale parameter, if unknown, can be estimated based on 
the validation sample routinely, or by adding another equation 
which is obtained by differentiating the estimated log likelihood 
with respect to this scale parameter, say, 

log( ( )) 0.β
σ

∂
=

∂
EL

4.  This method can accommodate both missing covariate and 
mismeasured covariate problems. 

5.	 This method can be extended by using local linear approximation 
(see Fan and Wang 2009) instead of the equation (10). In 
nonparametric smoothing, local linear approximation usually 
performs better than kernel smoothing. The method also 
accommodates models with instrumental variables. 

Asymptotics 

Under the regularity conditions (a), (b), (c), and the condition 
(d) listed in the appendix, our proposed estimates of the regression 
parameters by maximizing the estimated likelihood function are jointly 
consistent and asymptotically normally distributed, as described in the 
following theorem.

Suppose that the order of the kernel function K is, say

( ) ( )0, 1,2, , 1, 0.qu K u du forq u K u duαα= = … − ≠∫ ∫

Theorem 4.1
Under the conditions (a), (b), (c), and (d) in the appendix, and the 

bandwidth condition that 2 20, ,nh nhα → →∞ we have

1.	 ELβ
∧

is a consistent estimator of β .

2.	 (0, )β β
∧ − → Σ 

 EL ELn N in distribution, as ,n →∞

where 

( )( ) ( )( )
2

' log ; , , log ; , ,i i i i i i i
yI E h S X Z S S X Zδ β β

β β
 ∂  = − +  ∂ ∂ 

                   

( )( )( ) ( )( )( )cov log ; , | , log ; , | , ,δ β β
β

 ∂  Σ = +  ∂ 
i i i i i i i i ih S E X W Z S S E X W Z

and lim V
n

n
n

ρ →∞=  is the ratio of the sample size of the validation 
sample and the total sample size. 

The variance and covariance matrix of ELβ
∧
∧

can be consistently 
estimated by their sample counterpart from the estimated log-
likelihood function,

( )1 1ˆ 1 ˆ1ˆ 1
β

ρ ρ∧

∧ ∧∧− −∑ ∑  = = + − 
 

∑
EL

EL I I I
n n

  		                 (14)

In equation (14), I
∧  is the observed   Fisher information matrix with 

elements
21 log( ( )) ,ij

i j

ELI
n

β
β β

∧ ∂
= −

∂ ∂

when replacing the unknown regression parameters with their estimates. 

( )( )1 11 ,ρ ρ− −∑ = + − ∑EL ELI I I
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and Wang [18]. Then we calculate all of the 'sβ
∧  through the Newton-

Raphson Method using the appropriate sets of data for each estimator. 
By using this method, we are able to solve the equations

( ) 0,l β
β

∂
=

∂

for , ,V N Candβ β β
∧ ∧ ∧

 and solve

( )log( )
0

EL β
β

∂
=

∂

for  ELβ
∧

.

For each set of simulations, we calculate the standard error (SE), 
standard deviation (SD), and the percent of estimators covered when 
using a 95% confidence interval, the coverage probability (CP). The 
standard errors are obtained by calculating the sample variance-
covariance matrix of the maximum likelihood estimates for the 
parameters estimated over all simulations. The standard deviations are 
obtained from the estimated variance using equation (14). The values 
for CP are obtained by keeping track in each simulation if the true β 
values are within a 95% confidence interval surrounding the estimates 
using that simulation’s estimated SD value.

The parameter values used in our simulations were '
1 2( , )β β β=  = 

(log(2), log(1.5)). We tested with these values in a few different situations. 
We used uσ = 0.2 and uσ  = 0.8, sample sizes n = 200 and n = 500 and 
censoring rates of 30% and 50%. We chose a constant validation ratio of 

0.5Vn
n

ρ = = and each simulation is repeated 1000 times. The simulation 
results are summarized in table 1 for the exponential regression model, 
and in table 2  for the proportional odds model.

We have also conducted simulations for other parameter settings, 
such as (1) 0.6uσ = ; (2) a lower validation rate of 30%; (3) with an 
unknown but estimated measurement error variance 2

uσ ; (4) with an 
estimated σ   in the AFT model. The results were all similar to those 
reported and are hence skipped.

From Tables 1 and 2, we make the following observations:

Both  Vβ
∧

 and  ELβ
∧  are performing very well. The naive estimator Nβ

∧  
is biased at higher values of measurement error, uσ . 

The ELβ
∧

 estimator is more efficient than the Vβ
∧  estimator in the sense 

that the latter has bigger standard errors. 

If ρ were to increase to 1, the relative efficiencies would go to 1 
since aside from having to estimate the unobserved Xi’s for the non-
validation set versus excluding all of the non-validation data, the 
methods of estimation are the same. 

The proposed variance estimator (14) for 
ELβ

∧  results in a good 
estimate of the true variance, 

ELβ
∧∑ , for both models. 

The coverage probabilities of the 95% confidence interval are good 
for all estimators except  Nβ

∧
 when  uσ  is large. In the case where 

0.8uσ =  
they were bad and got worse as we increased the sample size but kept 
the same ρ since it increased the total data with error in each estimation 
without lessening its effect with a larger proportion of known Xi values, 
while the width of the confidence interval is shortened by the increasing 
sample size. 

In comparing the two models, the exponential regression model 
appears to have smaller SE  and SD values for all four estimators, but 

Σ is the sample variance-covariance matrix of the non-validation half 
of the estimating function U( )β  which estimates its corresponding 
population counterpart. The proof of the theorem is deferred to the 
appendix.

Results of Numerical Studies
Simulations

In this section we investigate the small sample performance of our 
proposed estimator. We carry out extensive simulations in order to 
compare its efficiency and accuracy with other alternative estimation 
methods. We compare the proposed estimator based on the estimated 
likelihood method previously discussed ( )ELβ

∧

with three different 
estimators. The first estimator ( )Vβ

∧ is based only on the validation 
sample, ignoring the observations with missing values for Xi. This does 
not require the estimation of the unobserved data but as a trade-off 
must deal with a smaller sample size. The second estimator ( )Nβ

∧

 is 
based on the naive use of the auxiliary covariate as the true covariate in 
the sample. In this case we assume that for the non-validation sample, 
the unobserved Xi values are equal to the observed Wi values, ignoring 
the measurement error. The third estimator ( )Cβ

∧

 is based on a complete 
knowledge of the data. This is the best case scenario that would exist if 
we actually observed the Xi values for the non-validation sample and 
thus are working with a validation sample of the full sample size. We 
expect the efficiency and accuracy of ( )ELβ

∧
to be better than that of ( )Vβ

∧

and close to that of  ( )Cβ
∧

.

Simulations are done for the cases in Sections 2.1.2 and 2.1.3. 
For both, the random Xi and Zi data are generated from a uniform 
distribution with a lower limit of 0 and an upper limit of 5, Xi, Zi ~
uniform (0,5). The auxiliary covariate Wi is defined as i i iW  X  U= +
where 2 (0, )uUi σΝ  and 2

uσ  determines the size of the measurement 
error in our sampling. Given Xi and Zi, the random failure times Ti for 
the first case are generated from the equations

{ }i iT  exp Y ;=

and

i 1 i
'
2 iY X Z ;iβ β ε= + +

where the 'siε are iid and are following a standard extreme value 
distribution as discussed in Section 2.1.2. For the proportional odds 
model, we have

'
2i 1 i i iY X Z V ;β β σ= + +

where Vi follows the standard logistic distribution as shown in Section 
2.1.3, and we let  = 1. The parameters ' '

1 2( , )β β β= are chosen prior to 
the simulations. The random censoring times Ci are generated from a 
uniform distribution, [ ]i limC uniform 0;  c~ , where clim is chosen such that 
the results have approximately 30% or 50% of the failure times censored.

For each set of simulations, there are pre-determined n and nV 
values and the Xi, Wi, Zi, Ti, and Ci data is generated as outlined above. 
We estimate the 

V
n−  iX   values for the non-validation set for use in the 

estimated likelihood method from the V in X 's in the validation set and 
the n Wi’s by using kernel smoothing as depicted in equation (10). For 
our calculations, we use the Gaussian kernel function, which has an 
order of 2,

( ) 21/21 ,
2

uK u e
π

−=

where ( ) /i ju W W h= − and we take bandwidth 1/32 uh nσ −= as used by Zhou 
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the log-logistic regression model does not experience such a dramatic 
decrease in CP for the  

Nβ
∧

 estimator when  uσ  was increased. This is 
likely due to the mentioned larger SD values used in the calculations. 

Application to PBC data

We apply the proposed method to analyze data from the Mayo 
Clinic trial in PBC of the liver. PBC is a chronic liver disease that 
inflames and slowly destroys the bile ducts in the liver. Bile is a liquid 
produced in the liver which travels through these bile ducts to assist 
digestion in the small intestines. When these ducts are damaged, the 
bile builds up within the liver, causing damage and leading to cirrhosis. 
Scar tissue will then start to replace healthy liver tissue, impairing its 
ability to function properly. While the cause of PBC is unknown, it 
is believed to be a type of autoimmune disorder where the immune 
system attacks the bile ducts. Approximately 90% of patients who 
develop PBC are women, most often between the ages of 40 and 60. It is 
typical for those with PBC to not have any symptoms when diagnosed 
because it is often diagnosed early from routine blood tests checking 
the liver. Since it is a slow acting disease, if it is found early the patient 
may slow the progression of cirrhosis through treatment and still have 

many years with a healthy lifestyle, and possibly even have a normal life 
expectancy if their case is not too dire. However, there is currently no 
known cure for the disease. The only known way to effectively remove 
PBC is through a liver transplant. If the patient is deemed appropriate 
for a transplant, steps need to be taken to prevent the immune system 
from damaging the new liver [28,29].

In the random Mayo Clinic trial, a total of 418 patients were 
eligible. Of these 418, mostly complete data was obtained from the 
first 312 patients. The other 106 patients were not part of the actual 
clinical trial but agreed to have some basic measurements taken and 
to be followed for survival. The variables that we used for our analysis 
were time, the number of days between registration and the earlier of 
death, transplantation, or the study analysis date; status, the indicator 
of a patient’s status at their endpoint in the trial, denoted as 0, 1, or 2, 
corresponding to censored, transplant, or dead, respectively; Aspartate 
Aminotransferase (in U/ml), once referred to as SGOT; bili, serum 
bilirubin (in mg/dl); albumin, serum albumin (in mg/dl); age, patient’s 
age (in years); protime, standardized blood clotting time.

In this clinical trial, one of the variables that were measured only 
for the first 312 cases was aspartate aminotransferase, due to some 

Censor

n  Rate uσ β
∧

1β
∧

1

SE
β
∧

1

SD
β
∧

1

CP
β
∧

2β
∧
∧

2

SE
β
∧

2

SD
β
∧

2

CP
β
∧

200 0.3 0.2 V 0.694 0.068 0.067 0.949 0.403 0.063 0.062 0.947
 N 0.690 0.047 0.046 0.939 0.408 0.044 0.043 0.950

 EL 0.693 0.048 0.047 0.938 0.405 0.044 0.043 0.940
 C 0.694 0.047 0.047 0.942 0.404 0.044 0.043 0.950

0.8  V 0.695 0.065 0.067 0.947 0.403 0.063 0.062 0.952
 N 0.644 0.048 0.043 0.748 0.459 0.048 0.042 0.715

 EL 0.699 0.051 0.050 0.950 0.407 0.048 0.046 0.943
 C 0.694 0.046 0.047 0.946 0.405 0.043 0.043 0.953

0.5 0.2  V 0.694 0.085 0.085 0.955 0.403 0.076 0.074 0.937
 N 0.691 0.060 0.059 0.954 0.407 0.054 0.052 0.940

 EL 0.694 0.060 0.059 0.949 0.404 0.054 0.052 0.939
 C 0.695 0.060 0.059 0.956 0.404 0.054 0.052 0.940

0.8  V 0.695 0.086 0.085 0.946 0.406 0.075 0.075 0.951
 N 0.637 0.060 0.054 0.788 0.463 0.055 0.050 0.782

 EL 0.695 0.063 0.061 0.937 0.404 0.056 0.053 0.938
 C 0.695 0.060 0.059 0.944 0.406 0.052 0.052 0.957

500 0.3 0.2  V 0.692 0.043 0.042 0.941 0.406 0.038 0.039 0.957
 N 0.688 0.029 0.029 0.940 0.410 0.027 0.027 0.953

 EL 0.691 0.030 0.029 0.944 0.407 0.027 0.027 0.954
 C 0.691 0.029 0.029 0.944 0.406 0.027 0.027 0.957

0.8  V 0.696 0.043 0.042 0.942 0.402 0.040 0.039 0.935
 N 0.644 0.032 0.027 0.530 0.458 0.031 0.026 0.473

 EL 0.700 0.033 0.031 0.937 0.405 0.031 0.029 0.935
 C 0.694 0.031 0.029 0.932 0.403 0.028 0.027 0.946

0.5 0.2  V 0.697 0.052 0.053 0.958 0.404 0.046 0.046 0.949
 N 0.691 0.036 0.037 0.949 0.409 0.032 0.033 0.945

  EL 0.694 0.037 0.037 0.948 0.406 0.033 0.033 0.937
 C 0.695 0.036 0.037 0.953 0.405 0.032 0.033 0.945

0.8  V 0.696 0.053 0.053 0.946 0.404 0.047 0.046 0.952
 N 0.637 0.037 0.034 0.589 0.462 0.036 0.031 0.566

 EL 0.695 0.039 0.038 0.950 0.404 0.036 0.034 0.937
 C 0.695 0.037 0.037 0.957 0.405 0.033 0.033 0.952

Table 1: Results after 1000 simulations for 'β = (log(2),log(1.5)) = (0.693, 0.405) with ρ = 0.5 and  ( 1/3)2σ −= uh n  using the exponential regression model.
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difficulties. We are extremely interested in knowing its relationship with 
the patients’ survival. In order to estimate the unobserved AST values 
for the other 106 patients, which form the non-validation sample in this 
analysis; we chose serum bilirubin to act as the auxiliary covariate, W. 
There is data observed for serum bilirubin for every patient and it was 
therefore available to be used in kernel smoothing. To determine an 
estimate for  uσ  to use in the calculation of the bandwidth, we used the 
least squares method to the regression equation i 0 1 i iX Wβ β ε= + + and 
calculated the MSE so that u MSEσ =  = 0.369. The scale parameter for 
the AFT models were estimated based only on the validation data and 
then applied to the analysis using the proposed approach, where we 
calculated σ = 0.873 for proportional hazards model and σ = 0.676 for 
proportional odds model.

To test along side of AST, we included the variables serum albumin, 
age and protime in vector Z. These variables were measured for most 
of the patients, and thus were good choices for Z. There were two cases 
in the non-validation set with missing values for protime, so they 
were omitted. This left us with a validation set of 312 patients and a 
non-validation set of 104 patients. We decided to not include edema, 
even though it was measured for all patients, because there was not a 
single patient in the non-validation set that had edema despite diuretic 

therapy. For our calculations, we took the logarithms of the data for 
AST, serum bilirubin, serum albumin, and protime. Also, we treated 
having a transplant the same as being censored, so a status of 0 or 1 
resulted in δ = 0, and thus a status of 2 resulted in δ = 1.

The proportional hazards and the proportional odds models Fit this 
part of the data equally well, in the sense that we obtained very close 
AIC values for both. The results of applying these models are hence 
provided below.

Tables 3 and 4 show the results of the analysis on the PBC data 
using our estimated likelihood method on all 416 observations and 
the validation set method on just 312 observations, using both of the 
previously discussed models. Since we use a separate variable for our 
auxiliary covariate not just a measurement of X containing error, the 
naive method is not appropriate for this example. The estimates of the 
variables’ coefficients, their estimated standard deviations, and p-values 
are listed in the tables.

In Table 3, we see that except for the case of log (albumin), the 
standard deviations are all smaller in the estimated likelihood method 
than the validation set method, while every standard deviation is 

Censor

n Rate uσ β
∧

1β
∧

iX 's
1

SD
β
∧

1

CP
β
∧ 2β

∧

2

SE
β
∧

2

SD
β
∧

2

CP
β
∧

200 0.3 0.2  V 0.694 0.098 0.097 0.948 0.408 0.097 0.096 0.955
 N 0.691 0.067 0.068 0.948 0.407 0.066 0.067 0.948
 EL 0.694 0.068 0.069 0.957 0.405 0.067 0.067 0.950
 C 0.694 0.067 0.068 0.947 0.405 0.066 0.067 0.951

0.8  V 0.692 0.098 0.097 0.953 0.405 0.095 0.096 0.943
 N 0.639 0.069 0.066 0.848 0.447 0.066 0.066 0.909
 EL 0.692 0.073 0.070 0.936 0.405 0.069 0.069 0.952
 C 0.692 0.068 0.068 0.953 0.407 0.065 0.067 0.961

0.5 0.2  V 0.697 0.112 0.109 0.938 0.407 0.106 0.103 0.943
 N 0.689 0.081 0.076 0.937 0.412 0.076 0.072 0.943
 EL 0.692 0.081 0.076 0.941 0.409 0.076 0.073 0.941
 C 0.693 0.081 0.076 0.937 0.409 0.076 0.072 0.945

0.8  V 0.697 0.108 0.109 0.954 0.405 0.102 0.104 0.956
 N 0.642 0.076 0.073 0.874 0.447 0.073 0.071 0.912
 EL 0.693 0.080 0.078 0.948 0.403 0.076 0.074 0.946
 C 0.694 0.077 0.076 0.949 0.407 0.074 0.072 0.953

500 0.3 0.2  V 0.695 0.061 0.061 0.948 0.401 0.060 0.060 0.951
 N 0.690 0.043 0.043 0.956 0.406 0.042 0.042 0.948
 EL 0.693 0.043 0.043 0.952 0.403 0.042 0.042 0.948
 C 0.694 0.043 0.043 0.954 0.403 0.042 0.042 0.950

0.8  V 0.696 0.062 0.061 0.950 0.405 0.061 0.060 0.944
 N 0.643 0.042 0.042 0.776 0.447 0.041 0.042 0.830
 EL 0.696 0.045 0.044 0.945 0.404 0.043 0.043 0.948
 C 0.696 0.043 0.043 0.950 0.406 0.041 0.042 0.958

0.5 0.2  V 0.694 0.069 0.068 0.952 0.402 0.067 0.065 0.934
 N 0.691 0.048 0.048 0.943 0.407 0.047 0.045 0.939
 EL 0.694 0.049 0.048 0.947 0.404 0.047 0.046 0.940
 C 0.695 0.048 0.048 0.944 0.404 0.047 0.046 0.940

0.8  V 0.696 0.066 0.068 0.961 0.406 0.066 0.065 0.942
 N 0.640 0.048 0.046 0.753 0.449 0.047 0.045 0.826
 EL 0.691 0.051 0.049 0.942 0.405 0.049 0.046 0.942
 C 0.694 0.049 0.048 0.953 0.408 0.047 0.046 0.956

Table 2: Results after 1000 simulations for 'β = (log(2), log(1.5)) = (0.693, 0.405) with ρ = 0.5 and  ( 1/3)2σ −= uh n using the log-logistic regression model.
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smaller for the estimated likelihood method in Table 4. In each case, 
the magnitudes of the estimated coefficients vary between estimation 
methods, but they show the same relationships between the covariates 
and time of death. Most importantly however, is that the significance 
of one of the coefficients differs between estimation methods. For the 
exponential regression model, we note that the p-value for log (AST) 
is less than 0.05 only for the estimated likelihood method. Therefore, 
when using the smaller sample sizes in the validation set method we are 
unable to conclude that all of the coefficients are significantly different 
from zero for either model, but all four coefficients become significant 
when using the estimated likelihood method. This emphasizes the 
importance of not omitting some of your data since as we have seen, it 
is possible to accidentally conclude that a significant variable from your 
analysis is in fact, not significant.

Discussions
In this paper we proposed to use the kernel smoothing method to 

include the informative auxiliary covariate into the statistical inference 
of failure time data based on parametric AFT models. An estimator 
of the regression parameters is obtained through the maximization 
of an estimated likelihood function. The asymptotics of the proposed 
estimator is investigated. A consistent estimator of the estimation 
variance is also proposed. Simulation studies are conducted for the 
case when the error of the AFT model follows a standard extreme value 
distribution, as well as a standard logistic distribution. The proposed 
method is then applied to the PBC data as an illustration.

The motivation of conducting this study is twofold. It is well known 
that the AFT models are robust to mis-specifications when some of 
the predictive regressors are ignored. The regression coefficients are 
invariant, at least for distributions within the Weibull family. Secondly, 
the partial likelihood method is less efficient in the case of small sized 
samples, although it is asymptotically efficient when the sample size 
goes to infinity [11].

The authors are currently investigating semi-parametric AFT 

models with auxiliary covariates. The outcome is going to be reported 
in a forthcoming paper.
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Method Variable β
∧

SD P-Value
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log(protime) 1.656 0.462 < 0.001

Table 4: AFT model analysis of PBC data using validation set and estimated 
likelihood methods using the log-logistic regression model.
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Table 3: AFT model analysis of PBC data using validation set and estimated 
likelihood methods using the exponential regression model.
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