Adoptive Immunotherapy Against Malignant Glioma Using Survivin-specific CTLs Expanded by W6/32 Antibody-mediated Artificial Antigen-presenting Cells

Xiaoling Lu1,2,3,*, Jiaqi Shi4, Qin Yao3, Jian He1, Yuan Zhou6, Hongbo Cai7 and Yongxiang Zhao1,2,3*

1Biological Target Diagnosis & Treatment Center, Guangxi Medical University, Nanning 530021, China
2The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
3Department of Immunology, Guangxi Medical University, Nanning 530021, China
4Department of Pathology, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
5Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, China
6Department of Pathology, University of Pittsburgh, 200 Lothrop St, BST S-450, Pittsburgh, PA 15213, USA

Abstract
Survivin is a bifunctional protein that acts as a suppressor of apoptosis and plays a central role in cell division. The protein is strongly expressed in the most common human neoplasms, has prognostic relevance for some of them and appears to be involved in tumor cell resistance to anticancer agents and ionizing radiation. Recently, survivin has been reported to be abundantly overexpressed in malignant glioma. The present study is a report of a novel approach of targeting malignant glioma with pSurvivin95-104-specific cytotoxic T-lymphocytes (CTLs). pSurvivin95-104-specific CTLs were induced from the peripheral blood lymphocytes (PBLs) of HLA-A2 positive healthy donors by multiple stimulations with W6/32 antibody-mediated artificial antigen-presenting cells (aAPCs) made by coating HLA-A2-pSurvivin95-104 tetramer mediated by W6/32 antibody, anti-CD28 antibody, 4-1BBL and CD83 molecules to cell-sized latex beads. After multiple stimulations and sorting, the expanded CTLs were analyzed for tetramer staining, IFN-γ production, CTL reactivity and adoptive immunotherapy experiments. Tetramer staining assay demonstrated the expanded CTLs specifically bound HLA-A2-pSurvivin95-104 tetramer. The CTLs specifically produced IFN-γ in response to W6/32 antibody-mediated aAPCs and exhibited specific lysis against T2 cells pulsed with the peptide and HLA-A2* glioma cells expressing pSurvivin95-104, while HLA-A2* glioma cell lines that express survivin could not be recognized by the CTLs. The peptide-specific activity was inhibited by anti-HLA class I monoclonal antibody. Intravenous injection of the expanded pSurvivin95-104-specific CTLs into nonobese diabetic–severe combined immunodeficiency (NOD/SCID) mice harboring glioma cells resulted in glioma cells elimination, whereas transfer of control T-cells was ineffective. These results show the expanded CTLs specific for pSurvivin95-104 peptide could be a potential target of specific immunotherapy for HLA-A2 patients with malignant glioma.

Keywords: Immunotherapy; Glioma; Survivin; CTLs

Introduction
Malignant glioma patients usually undergo debulking surgery followed by radiation and aggressive rounds of chemotherapy. Despite the majority of the tumors being removed or killed, no lasting and effective antitumor immunity is generated and the patients die from the tumor cells escaping or resisting those therapies. These failures lead many to believe that an aggressive combination of standard therapies, along with other biologically based therapies, is needed to successfully treat this cancer. Although the central nervous system (CNS), and tumors that arise therein, reside in an “immunologically privileged” site [1], some glioma patients were successfully treated by immunotherapy [2-7]. Adjuvant immunotherapy modalities may be particularly useful for treating gliomas located next to critical brain control regions (brain stem or the thalamus) where surgery or radiation cannot be used, provided inflammation can be controlled. The advantage of generating an immune response toward the cancer cells is that the immunized T-cells can now seek and destroy the remaining tumor cells that resisted the therapies or were localized to sites that were inaccessible to the traditional treatments. Therefore, immunotherapy for glioma is an attractive alternative treatment option.

Adoptive transfer of large numbers of tumor-specific cytoxic T-lymphocytes (CTLs) is currently being developed to treat cancer by changing the relative balance between tumor load and the immune response [8,9]. CTLs recognize “processed” peptides that are derived from endogenous proteins and presented on the cell surface in association with major histocompatibility complex (MHC) class I molecules [10,11]. Peptides that bind to a MHC class I molecule have been shown to share common amino acid motifs, which are called major anchor motifs [11]. Hence, tumor-specific CTLs can recognize and select the antigenic peptides, then kill tumor cells in an antigenic peptide-specific fashion.

Survivin is a newly identified member of the inhibitor of apoptosis

*Corresponding authors: Yongxiang Zhao, Biological Target Diagnosis & Treatment Center, Guangxi Medical University, Nanning 530021, China, Tel: +86 771 533 0964; Fax: +86 771 531 2916; E-mail: yongxiang_zhao@126.com
Xiaoling Lu, Biological Target Diagnosis & Treatment Center, Guangxi Medical University, Nanning 530021, China, Tel: +86 771 533 0964; Fax: +86 771 531 2916; E-mail: luwuliu@163.com

Received September 06, 2011; Accepted September 22, 2011; Published September 24, 2011

Copyright: © 2011 Lu X, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

(IAP) gene family that has been implicated in suppression of apoptotic cell death and regulation of cell division [12,13]. Survivin expression has been found to be undetectable in normal adult tissues. However, it has been found to be abundantly expressed in fetal tissues and a wide variety of human malignancies [14]. The fact that survivin overexpression may provide a survival benefit for tumor cells and that its enhanced expression is almost completely restricted to malignant tissues makes survivin an interesting target for the development of immunotherapeutic strategies.

Recently, survivin has been reported to be abundantly overexpressed in malignant glioma [15,16]. The human leukocyte antigen (HLA)-A2.1-restricted CD8+ T-cell epitope ELTLGFLKL (referred to as pSurvivin₉₅₋₁₀₄) derived from the tumor-associated antigen (TAA) survivin was identified [17]. In the present study, we used W6/32 antibody-mediated artificial antigen-presenting cells (aAPCs) made by coating HLA-A2/pSurvivin₉₅₋₁₀₄ tetramer mediated by W6/32 antibody, anti-CD28 antibody, 4-1BBL and CD83 molecules to cell-sized latex beads to generate specific CTL against malignant glioma from the peripheral blood lymphocytes (PBLs) of healthy donors in vitro, in which these CTL lysed HLA-A2+ glioma cells that expressed pSurvivin₉₅₋₁₀₄ and could eliminate glioma cells in NOD/SCID mice.

Materials and Methods

Cell line and cell culture

T2 cells bear the HLA-A*0201 gene, but express a very low level of cell surface HLA-A2.1 molecules, and are unable to present endogenous antigens due to a deletion of most of the MHC class II region, including the transporter associated with antigen processing, and genes encoding immuno-proteasomal subunits. This cell line was maintained in Roswell Park Memorial Institute (RPMI)-1640 medium (Invitrogen, Carlsbad, USA) supplemented with 10% fetal bovine serum (FBS; HyClone, Logan, USA) and 1% antibiotics (penicillin / streptomycin; 100 U/ml). Glioma cell lines U251 (HLA-A2+, survivin⁺) and A172 (HLA-A2-, survivin⁺) were cultured in our laboratory. These glioma cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM)-supplemented with 10% FBS and 1% antibiotics (penicillin / streptomycin; 100 U/ml). NOD/SCID mice, 6 to 8 weeks of age, were obtained from Vital River Laboratories (Beijing, China) and were maintained under a specific pathogen-free condition.

Synthetic peptide

Survivin-derived peptide pSurvivin₉₅₋₁₀₄ ELTLGFLKL [17], and the control peptide HIV-Gag peptide SLYNTVATL (pHIV) [18] were used in this study; they were synthesized by standard solid-phase chemistry and characterized by mass spectrometry. The purity of the synthetic peptides was more than 95%, as indicated by analytical HPLC. Lyophilized peptides were dissolved in dimethylsulfoxide and stored at –80°C after dilution in phosphate-buffered saline (PBS).

HLA class I typing

HLA class I typing was performed with microcytotoxicity by Lambda antigen tray class I (One Lambda, Canoga Park, USA).

Detection of survivin gene expression in glioma cell lines by reverse transcription (RT)–polymerase chain reaction (PCR)

The expression of the survivin gene in glioma cell lines U251 and A172 was detected by RT-PCR. The primers used for amplification of human survivin and β2-microglobulin (β2m) were as follow: survivin, 5′-CGACCCCATAGAGGAACATAAA-3′ (sense), and 5′-GGAATTAACCCCCTGGAAGTGTTG-3′ (anti-sense); β2m, 5′-GGGTATTCTACCATCGACAT-3′ (sense), 5′-GAGTGCTGTTACATGTCTCGA-3′ (anti-sense). For the surviving and the β2m cDNA the PCR temperature profiles were as follows: 2 minutes pretreatment at 94°C and 30 cycles at 94°C for 30 seconds, annealing at 59°C for 30 seconds and 72°C for 60 seconds with a final extension at 72°C for 7 minutes.

Preparation of HLA-A2-pSurvivin₉₅₋₁₀₄ tetramer

Synthesis of HLA-A2-pSurvivin₉₅₋₁₀₄ tetramer was carried out according to the protocol of Altman et al. [19]. Briefly, plasmids encoding HLA-A*0201 (heavy chain) molecules with a C-terminal biotinylation site and human β2m molecule were constructed by insertion of the target genes into pET28a. The heavy chain and β2m molecules were expressed in Escherichia coli, and purified from inclusion bodies, then refolded in the presence of excess pSurvivin₉₅₋₁₀₄ to form HLA-A2-pSurvivin₉₅₋₁₀₄ monomeric product. The folded product was then subjected to enzymatic biotinylation by BirA enzyme (AviDity, Denver, USA) at 25°C for 12 h. This biotinylated HLA-A2-pSurvivin₉₅₋₁₀₄ monomer was used for the preparation of the HLA-A2-pSurvivin₉₅₋₁₀₄ tetramer, which was produced by mixing the purified biotinylated monomer with phycoerythrin (PE)-labeled streptavidin (Sigma, St. Louis, USA) at a molar ratio of 4:1. HLA-A2-pHIV tetramer was also prepared according to the protocol.

Generation of W6/32 antibody-mediated aAPC

The 4.5 µm s epoxy-activated magnetic beads (Dynal Biotech, Lake Success, NY) were incubated with a mixture of W6/32 (2 µg/10⁶ beads; BD Pharmingen), anti-human CD28-specific antibodies (1 g/10⁶ beads; BD Pharmingen, San Diego, CA, USA), 4-1BBL (0.5 µg/10⁶ beads; BD Pharmingen, San Diego, CA, USA) and CD83 (0.5 µg/10⁶ beads; BD Pharmingen, San Diego, CA, USA) for 1 h in 1 ml wash buffer per 10⁶ beads at 4°C on a rotator, washed twice with PBS, then blocked with 0.4% BSA for 15 min and washed with PBS. Finally, the beads were incubated with 20µg HLA-A2/pSurvivin₉₅₋₁₀₄ tetramer or HLA-A2/pHIV tetramer for 24 h at 4°C on a rotator and washed with PBS. The W6/32 antibody-mediated pSurvivin₉₅₋₁₀₄-specific aAPCs or W6/32 antibody-mediated pHIV-specific aAPCs were stored PBS at 4°C.

Expansion of CTLs

PBLs from six healthy HLA-A2-positive donors (Informed consent was obtained from each donor), were separated using standard Ficoll-Hypaque (Sigma) gradient density centrifugation and PBL isolation kit (Miltenyi). The PBLs were stimulated with W6/32 antibody-mediated pSurvivin₉₅₋₁₀₄-specific aAPCs in vitro using the protocol adapted from previous studies [20]. Briefly, The PBLs were used as responder cells and stimulated with W6/32 antibody-mediated pSurvivin₉₅₋₁₀₄-specific aAPCs. Responder cells (3 × 10⁶ well) were co-cultured with W6/32 antibody-mediated pSurvivin₉₅₋₁₀₄-specific aAPCs. Addition of 10 ng/ml IL-7, 10 ng/ml IL-21, 10 ng/ml IL-15 and 50 units/ml IL-2. After four rounds of co-culture, pSurvivin₉₅₋₁₀₄-specific CTLs were isolated.

J Cell Sci Ther
ISSN: 2157-7013 JCEST, an open access journal

Volume 2 • Issue 3 • 1000110
from the bulk cultures by fluorescence activated cell sorter (FACS) using HLA-A2/pSurvivin95-104 tetramer. After sorting, the pSurvivin95-104-specific CTLs were restimulated and expanded with W6/32 antibody-mediated pSurvivin95-104-specific aAPCs in the same fashion for tetramer staining, IFN-γ production, CTL reactivity and adoptive immunotherapy experiments. The pHIV-specific CTLs (as a control) were expanded by W6/32 antibody-mediated pHIV-specific aAPCs in the same fashion.

Tetramer staining

Tetramer staining was carried out as previously described [21,22]. In brief, 1 × 10^6 cells were incubated in 100 μl fluorescence activated cell sorter (FACS) staining buffer (PBS supplemented with 1% BSA and 0.05% NaN3) with 20 μg/ml HLA-A2-peptide tetramer at 37°C for 30 min. Cells were washed with PBS and subsequently incubated with FITC labeled anti-CD8 antibody (BD PharMingen, San Diego, USA) at 4°C for 30 min. All cells were washed with PBS twice after being stained, and then they were fixed in 1% formaldehyde. Stained cells were analyzed with FACScalibur (Becton Dickinson, Heidelberg, Germany).

Enzyme-linked Immuno-spot assay

To determine the frequency of T-cells capable of responding to a specific stimulus by secretion of interferon (IFN)-γ, an enzyme-linked immuno-spot assay (ELISPOT) was carried out. The W6/32 antibody-mediated pSurvivin95-104-specific aAPCs, W6/32 antibody-mediated pHIV-specific aAPCs, Beads pulsed without HLA-A2/pSurvivin95-104 tetramer (referred to uncoated aAPCs), K562, A172 (HLA-A2-, survivin+), U251 (HLA-A2-, survivin+), were used as stimulating target cells. Other target cells T2/pSurvivin95-104 (the pSurvivin95-104-pulsed T2 cells) and T2/PHIV (the pHIV-pulsed T2 cells) were prepared by incubating T2 cells with pSurvivin95-104 (60 μg/ml) and pHIV (60 μg/ml) respectively for 3 h at 37°C. T2 cells pulsed without peptide were used as the negative control. Responder cells were co-incubated with the target cells at a ratio of 1:10 (stimulator cell : responder cell) at 37°C for 24 h in 96-well ELISPOT plates. The assay was performed and developed according to the manufacturer’s instructions (BD PharMingen).

Cytotoxicity assay

To analyze the cytotoxic activity of the expanded CTLs against various target cells, cytotoxic assays were performed by incubating 51Cr-labeled (500 μCi) target cells with effector cells at various effector : target ratios at 37°C for 4 h. Glioma cell lines U251 (HLA-A2-, survivin+) and A172 (HLA-A2+, survivin+), T2/pSurvivin95-104, T2/PHIV, K562 and T2 cells pulsed without peptide were selected as target cells. The percentage of 51Cr release was calculated according to the following formula: 100 × (experimental release - spontaneous release) / (maximum release - spontaneous release).

Inhibition of the cytotoxicity with HLA class I-specific monoclonal antibody

T2/pSurvivin95-104, and U251 target cells were incubated with anti-HLA class I monoclonal antibody (mAb) W6/32 (American Type Culture Collection [ATCC], http://www.atcc.org/) [18] and a control isotypic mAb of irrelevant specificity, immunoglobulin G2a (IgG2a; BD PharMingen) at a final concentration of 30 μg/ml for 40 min at 4°C before cytotoxicity assay. After incubation, the target cells were mixed with effector cells for the 51Cr release assay.

Adoptive immunotherapy experiments

NOD/SCID mice were inoculated with 4 × 10^6 human glioma U251 cells in 0.5 ml PBS intravenously. Mice were divided into three groups (n = 10 each). For adoptive transfer experiments, mice were treated 3 times on days 5, 15, 25 after tumor inoculation with i.v. injection of induced pHIV-specific CTLs (up to 3×10^6 cells per injection). Mice with injection of PBS or HLV-specific CTLs were served as the control groups. All mice received two injections of rhIL-2 (2 ×10^4 IU/mouse) i.p. on days 5, 15, 25. Tumor volumes were calculated using Vernier calipers at 5-day intervals after tumor cells inoculation according to the formula: d1 × (d2)^2 ×0.5 (d1 = largest diameter, d2 = perpendicular diameter). The survival time of each group of mice was monitored and recorded on a regular basis. They were sacrificed when any single or combined tumor linear measurement exceeded 20 mm. Three independent experiments were performed.

Statistical analysis

All data in this study were analyzed using version SPSS 11.0 software (SPSS, Chicago, USA). P<0.05 was considered as statistically significant.

Results

Survivin gene expression and HLA class I typing in glioma cell lines

The mRNA expression of the survivin gene was detected in U251 and A172 cell lines. As shown in Figure 1, the expression level of the survivin gene was high in U251 and A172 cell lines, whereas there was no expression in PBMC. The results of HLA class I typing detection showed that U251 was an HLA-A2+ cell line and A172 was an HLA-A2 cell line.

Frequency of pSurvivin95-104-specific CTLs as determined by tetramer staining

A flowcytometric analysis of PBLs was performed before or after culture with the W6/32 antibody-mediated aAPC. Before stimulation using W6/32 antibody-mediated pSurvivin95-104-specific aAPCs, the frequency of CD8+ T-cells stained with HLA-A2/pSurvivin95-104 tetramers was 0.63%. However, after sorting and expansion, FACS analysis revealed that 95.1% of CD8+ T-cells were stained with HLA-A2/pSurvivin95-104 tetramers, which was not observed when staining with the control tetramers (HLA-A2/pHIV tetramer) (Figure 2). The pSurvivin95-104-specific CTLs expanded by W6/32 antibody-
mediated aAPC from the other five normal donors showed similar results (Table 1).

Enzyme-linked immuno-spot assay

The Enzyme-linked immuno-spot assay was used to determine the frequency of individual antigen-specific IFN-γ producing T-cells. As shown in Figure 3, priming with U251 cells, T2pSurvivin\textsubscript{95-104} or W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs resulted in the generation of peptide-specific IFN-γ-producing CD8\(^+\) T-cells after the stimulation. The average spot number of responding lymphocytes induced by U251 cells, T2pSurvivin\textsubscript{95-104} or W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs (~95 peptide-specific spots / 10\(^{6}\) cells) were significant higher than that of responding lymphocytes induced by K562, T2pHIV, T2, A172 or uncoated-aAPCs (0 peptide-specific spots / 10\(^{6}\) cells) \((P < 0.05)\).

Cytotoxicity of pSurvivin\textsubscript{95-104}-Specific CTLs

The cytotoxic activity of the expanded CTLs against various target cells was tested using the \(^{31}\text{Cr}\)-releasing assay. CTLs showed approximately 75\% specific lysis against the T2pSurvivin\textsubscript{95-104} and U251 (HLA-A2+, survivin\(^+\)) at an effector : target ratio of 8:1. However, CTL showed approximately 1\% cytolysis against the T2pHIV, A172 or uncoated-aAPCs (0 peptide-specific spots / 10\(^{6}\) cells) (Figure 4). The specific killing activity of the CTLs expanded by the W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs was shown.

Table 1: Expansion of cytotoxic T lymphocytes (CTLs) specific for pSurvivin\textsubscript{95-104} in five human leukocyte antigen (HLA)-A2 positive healthy donors. The CTLs expanded by the W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs were tested for tetramer staining and cytotoxic activity. Tetramer staining cells indicate the percentage of viable CD8\(^+\) HLA-A2/pSurvivin\textsubscript{95-104} tetramer-positive or CD8\(^+\) HLA-A2/pHIV tetramer-positive lymphocytes in the CD8\(^+\) population of viable lymphocytes. Lysis indicates the percent lysis of pSurvivin\textsubscript{95-104}-pulsed T2 cells (T2pSurvivin\textsubscript{95-104}), U251 (HLA-A2*, Survivin\(^+\)) or pHIV-pulsed T2 cells (T2pHIV). Results are shown for an effector / target ratio of 8:1.

<table>
<thead>
<tr>
<th>Donor</th>
<th>HLA-A2/pHIV</th>
<th>HLA-A2/pSurvivin\textsubscript{95-104}</th>
<th>T2/pSurvivin\textsubscript{95-104}</th>
<th>U251</th>
<th>T2pHIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.56</td>
<td>94.2</td>
<td>72.8</td>
<td>70.0</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>0.43</td>
<td>96.4</td>
<td>79.7</td>
<td>74.9</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>0.67</td>
<td>97.9</td>
<td>80.1</td>
<td>72.9</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>0.73</td>
<td>92.1</td>
<td>74.3</td>
<td>73.7</td>
<td>1.3</td>
</tr>
<tr>
<td>5</td>
<td>0.62</td>
<td>95.8</td>
<td>76.2</td>
<td>75.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Figure 3: Detection of the pSurvivin\textsubscript{95-104}-specific cytotoxic T lymphocytes using ELISPOT assay. The CTLs expanded by the W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs were tested for ELISPOT assay. The effector cells were co-cultured with K562, A172, U251, T2pHIV, T2pSurvivin\textsubscript{95-104}, T2, uncoated aAPCs, pHIV-specific aAPCs or pSurvivin\textsubscript{95-104}-specific aAPCs. After 24 h of incubation, the frequencies of individual antigen-specific IFN-γ-producing T-cells were measured by an enzyme-linked immuno-spot assay (ELISPOT) kit. The bars in the graph represent standard error.

Figure 4: Detection of the pSurvivin\textsubscript{95-104}-specific cytotoxic T lymphocytes by HLA-A2-peptide tetramer staining. The frequency of HLA-A2-peptide tetramer-binding CD8\(^+\) T lymphocytes before and after expanding with W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs was shown. The following HLA-A2-peptide tetramer was used: HLA-A2-pSurvivin\textsubscript{95-104} tetramer and the control tetramer HLA-A2-pHIV tetramer-binding. A: The frequency of HLA-A2-pHIV tetramer-binding CD8\(^+\) T lymphocytes before stimulation was 0.57\%; B: The frequency of HLA-A2-pSurvivin\textsubscript{95-104} tetramer-binding CD8\(^+\) T lymphocytes before stimulation was 0.63\%; C: The frequency of HLA-A2-pHIV tetramer-binding CD8\(^+\) T lymphocytes after stimulation was 0.82\%; D: The frequency of HLA-A2-pSurvivin\textsubscript{95-104} tetramer-binding CD8\(^+\) T lymphocytes after expansion was 95.1\%. These results are representative of three experiments, and demonstrate that the co-culture of W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs and HLA-A2 positive PBLs can induce the pSurvivin\textsubscript{95-104}-specific CTLs.

Inhibition of cytotoxicity of pSurvivin\textsubscript{95-104}-specific CTLs by HLA class I specific mAb W6/32

To determine whether the CTLs expanded by W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs could recognize the specific target cells in a HLA class I-restricted manner, anti-HLA class I mAb W6/32 was utilized to block the cytotoxicity of the expanded CTLs. The cytotoxic activity against the T2pSurvivin\textsubscript{95-104} and U251 was significantly eliminated by W6/32. As shown in Figure 5, W6/32 expanded by the W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs against specific target cells was much more obvious than in any other control group (\(P < 0.05\)). The specific CTLs for pSurvivin\textsubscript{95-104} expanded by the W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs from the other five normal donors showed similar specific lysis ability (Table 1). These results showed that the cytotoxicity of the CTLs expanded by W6/32 antibody-mediated pSurvivin\textsubscript{95-104}-specific aAPCs is pSurvivin\textsubscript{95-104}-specific.
inhibited target cell lysis, whereas mouse IgG2a, used as an isotype control, showed no effect in T2pSurvivin95-104 and U251 cells. These results suggested that the expanded CTLs lysed the specific targets in an HLA class I-restricted manner.

Adoptive transfer of the expanded pSurvivin95-104-specific CTLs can mediate effective therapy of human glioma in NOD/SCID mice

To evaluate the therapeutic effects of pSurvivin95-104-specific CTLs expanded by W6/32 antibody-mediated pSurvivin95-104-specific aAPCs, NOD/SCID mice bearing U251 cells were treated by adoptive transfer of the expanded CTLs. Tumor volumes of PBS group or pHIV-specific CTLs group expanded as determined by measuring every 5 days. In contrast, the rate of tumor growth in animals treated with pSurvivin95-104-specific CTLs was significantly decreased as compared with that in animals treated with PBS or pHIV-specific CTLs (P <0.05) (Figure 6A). In addition, as shown in Figure 6B, none of treatment control mice survived longer than 40 days. However, treatment with the expanded pSurvivin95-104-specific CTLs was effective and cured 100% of the mice (> 60 days). These results demonstrated that adoptive transfer of the expanded pSurvivin95-104-specific CTLs can mediate effective therapy of human glioma in NOD/SCID mice.

Discussion

Malignant gliomas are the most common tumors in the central nervous system. When treated with conventional therapy such as surgery, radiation, or chemotherapy, the prognosis for patients with malignant glioma is poor [22]. Clearly, novel therapeutic strategies are necessary.

The adoptive transfer of tumor-specific CTLs provides a promising approach to the immunotherapy of cancer. Previous attempts to determine the impact of adoptive transfer in tumor immunotherapy have been limited by the difficulty of isolating T-cells of known antigen specificity. Melanoma and renal cell carcinoma were the first tumors in humans to be treated with adoptive immunotherapy [23]. Infusions of polyclonal T-cell populations isolated from the tumor (tumor-infiltrating lymphocytes) and nonspecifically expanded in vitro with high concentrations of IL-2 suggested the therapeutic potential of this approach in cancer patients [23]. The recent characterization of glioma-associated antigens recognized by human CTLs has opened new possibilities for the adoptive transfer of T-cells in glioma immunotherapy.

Rimoldi et al. [24] were the first to document that melanoma associated antigen-specific CTL lines could recognize HLA-matched glioma cells in vitro. Then, Chi et al. [25], Scarcella et al. [26], and Sahin et al. [7] reported that gp100 and MAGE-1 mRNA was expressed in glioma tumor cells and tumor tissue by RT-PCR, and HER-2 was found in brain tumor by immunohistochemical staining [28,29]. Prins et al. [30] validated melanoma-associated antigen gp100 and TRP-2 as immunotherapeutic targets in a murine glioma model. Liu et al. [31] reported on TRP-2 as a CTL target in malignant glioma.
which demonstrated that TRP-2 antigen can be naturally processed and recognized by TRP-2-specific CTLs. They also found that TRP-2-specific cytotoxic T-cell activity was detected when PBMCs were stimulated with autologous DCs pulsed with irradiated GBM tumor cells in vitro and in patients’ PBMCs after DC-pulsed autologous tumor lysate vaccinations. Very importantly, IL-13 receptor α2 has been identified as a glioma-specific antigen [32], and a HLA-A2.1-restricted CTL epitope (WLPFFGFLI) might serve as an attractive component of peptide-based vaccines to treat glioma [33,34]. Survivin is a member of the inhibitors of apoptosis family and is overexpressed in different types of malignancies [35]. Cytotoxic T-cells recognizing survivin epitopes can be elicited in vitro and by vaccination in patients with leukemia, breast cancer, and melanoma. Our results indicate that pSurvivin95-104 epitope could be used as tumor antigen targets for surrogate assays for antigen-specific CTLs or to develop antigen-specific active immunotherapy strategies for glioma patients.

There are several methods currently in use to activate and expand CD8+ T-cells to the numbers required for a trial of adoptive immunotherapy. One of the most widely used approaches has been based on the use of autologous antigen-loaded dendritic cells (DCs) as antigen presenting cells (APCs). However, the generation and maintenance of DCs is expensive and cumbersome. Furthermore, variability in DC number and the quality of the DCs are affected by both pretreatment of the patient and the patient’s disease. Therefore, a number of different systems have been developed in which aAPC present antigen–HLA complexes in combination with the appropriate costimulatory molecules. The benefits of an aAPC system to expand T-cells include their consistency over time and over multiple donors, their “off-the-shelf” availability, and the lack of need for coculture of allogeneic or virally infected cells with the desired T-cells. Furthermore, the use of artificial APCs may be more attractive for clinical use because they are more amenable to manufacturing within the constraints of current Good Manufacturing Practices than are cellular APCs [36-38]. In the present study, we used W6/32 antibody-mediated pSurvivin95-104-specific aAPCs to induce specific CTL against malignant glioma from the PBLs of healthy donors. Following this procedure, we found that the expanded CTLs, derived from PBLs in an HLA-A2+ healthy donor, could kill the HLA-A2-pSurvivin95-104 glioma cells when expanded with W6/32 antibody-mediated pSurvivin95-104-specific aAPCs in vitro. The specific killing activity of CTLs against specific target cells T2pSurvivin95-104 and U251 was much more effective than that of any other control group. The results indicated the cytotoxicity of the CTLs expanded with W6/32 antibody-mediated pSurvivin95-104-specific aAPCs is antigen-specific, that is, against the target cells bearing the corresponding HLA-A2-pSurvivin95-104 complexes. Intravenous injection of the expanded pSurvivin95-104-specific CTLs into nonobese diabetic–severe combined immunodeficiency (NOD/SCID) mice harboring glioma cells resulted in glioma cell elimination, whereas transfer of control T-cells was ineffective.

Proper cell signaling during the expansion phase is also an essential component in producing effective, functioning CTLs following infusion. Excessive stimulation and improper or absent co-stimulation could result in deficient cytolytic activity, lack of persistence or apoptosis. June et al. found the beads coated with HLA class II tetramers in an indirect fashion, via an anti-Class II antibody covalently bound to the bead, were more efficient activators of antigen-specific CD8+ T-cells than beads directly and covalently coated with HLA monomers or tetramers [39]. Our results show the beads coated with HLA class I tetramers via antibody W6/32 covalently bound to the bead, were more efficient activators of antigen-specific CD8+ T-cells than beads directly and covalently coated with HLA monomers or tetramers (data not shown). In addition, in this study, we used a combination of anti-CD28, 4-1BBL and CD83 for the generation of a costimulatory signal. Recent studies have demonstrated that combining B7.1/CD28 stimulation and 4-1BB signaling was required for optimal induction of CD25 and bcl-XL expression in CD8+ T-cells, increased CTL activity and protective anti-tumor immunity [40-42]. In addition, CD83 molecule is important in: (a) priming naive CD8+ T-cells; (b) driving their antigen-specific expansion; and (c) supporting their long-term survival and function when coupled to aAPCs [43,44]. As we learn more about the in vivo response and the effects of differing amounts and types of co-stimulation on CTL function post-infusion, future generations of the aAPC might prove to be essential because the bead can easily adapt to the new stimulatory requirements by adding or removing different co-stimulatory complexes.

In summary, we have presented data showing that the use of aAPC represents the state-of-the-art in generation of antigen-specific CTLs for adoptive immunotherapy. Thus, The W6/32 antibody-mediated artificial antigen-presenting cells (aAPCs) made by coating HLA-A2/pSurvivin95-104 tetramer mediated by W6/32 antibody, anti-CD28 antibody, 4-1BBL and CD83 molecules to cell-sized latex beads could provide a useful tool for the reproducible expansion of peptide-specific CTLs in vitro and significantly advance the field of adoptive immunotherapy. The W6/32 antibody-mediated pSurvivin...
specific aAPCs could be used as a standardized, “off-the-shelf” reagent to enrich pSurvivin 95-104-specific CTLs for the treatment of patients with malignant glioma.

Disclosures

The authors have no financial conflict of interest.

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (No. 30801335, No. 30170186, No. 30760185) and Supported by Program for New Century Excellent Talents in University (No. NECT-06-0761) and International Cooperation Project of The Ministry of Science and Technology of the People's Republic of China (No. 2008DFA31380).

References

