alexa Alternative Negative Feedback Control in the Aryl Hydrocarbon Receptor Signaling Pathway | OMICS International
ISSN: 2157-7609
Journal of Drug Metabolism & Toxicology
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Alternative Negative Feedback Control in the Aryl Hydrocarbon Receptor Signaling Pathway

Jason Matthews1,2*

1Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S1A8, Canada

2Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 1046 Blindern, 0316 Oslo, Norway

*Corresponding Author:
Jason Matthews
Department of Pharmacology and Toxicology
University of Toronto, Toronto, Ontario
M5S1A8, Canada, Department of Nutrition
Institute of Basic Medical Sciences
University of Oslo, 1046 Blindern
0316 Oslo, Norway
Tel: 416-946-0851
Fax: 416-978-6395
E-mail: [email protected]

Received date: December 14, 2012; Accepted date: December 17, 2012; Published date: December 19, 2012

Citation: Matthews J (2013) Alternative Negative Feedback Control in the Aryl Hydrocarbon Receptor Signaling Pathway. J Drug Metab Toxicol 4:e116. doi: 10.4172/2157-7609.1000e116

Copyright: © 2013 Matthews J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Drug Metabolism & Toxicology

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and member of the basic helix-loop-helix Period-ARNT (AHR nuclear translocator)-Single-minded protein family. The AHR is best known for mediating the toxic effects of the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD). Some of which include dysregulated lipid and glucose metabolism, carcinogenesis and dysfunction of the immune, reproductive and nervous systems [1]. However, the precise molecular mechanisms are not well established. AHR also regulates responses of numerous anthropogenic and natural chemicals, including several endogenous and dietary compounds [2], most of which do not cause TCDD-like toxicity. Recently, additional roles for AHR in adaptive drug metabolism, differentiation, vasculature development and in the modulation of regulatory T cells (Tregs) and proinflammatory T helper 17 (Th17) cells have been reported [3,4]. These findings have prompted intense interest in exploring AHR as a therapeutic target for cancer, autoimmune and other human diseases [5]. Understanding the molecular mechanisms of AHR signaling will provide a better appreciation of its biological role, its utility as a therapeutic target and the relationship between TCDD-exposure and human disease.

In the presence of bound ligand, cytoplasmic AHR translocates to the nucleus and heterodimerizes with ARNT. The activated AHR/ ARNT heterodimer binds to aryl hydrocarbon response elements (AHREs; also known as xenobiotic response elements [XREs]) in the regulatory regions of its target genes, commonly known as the “AHR gene battery” [6]. The genomic era continues to identify a seemingly endless list of AHR target genes, including xenobiotic drug metabolizing enzymes cytochrome P450 1A1 (CYP1A1) and CYP1B1, as well as genes involved in cell cycle, differentiation and development [7]. Most, but not all, genomic regions bound by AHR contain AHREs, suggesting that AHR is more flexible in its DNA binding preference or that it is recruited to DNA through protein tethering to other DNA bound transcription factors [8].

Although several studies have reported a wide-range of cellular activities regulated by AHR, there has been much less focus on determining how AHR-mediated responses are controlled. Currently, AHR signaling can be down-regulated by arguably three different mechanisms. There are a number of natural and synthetic AHR antagonists, including resveratrol, found in red wine and dietary flavonoids, such as kaempferol, which inhibit AHR recruitment to CYP1A1 and consequently TCDD-induced AHR transactivation [9]. Another well-known mechanism to down-regulate AHR signaling is through ligand-induced proteolytic degradation [10]. After entering the nucleus, agonist-activated AHR is exported and degraded by the ubiquitin/proteasome pathway. This degradation, however, is influenced by cell context and is not observed with some AHR agonists [10]. Similar to other PAS proteins, the AHR signaling pathway contains an auto-regulatory feedback loop, mediated by another member of the PAS family referred to as the aryl hydrocarbon receptor repressor (AHRR) [11]. AHRR is structurally similar to AHR, but it does not bind ligand and it lacks a transcriptional activation domain. Overexpression studies strongly support AHRR as a ligand-induced repressor of AHR [11,12]. It was originally proposed that AHRR bound and sequestered ARNT resulting in the quenching of AHR transactivation [11]. However, AHRR was recently reported to interact directly with AHR and overexpression of ARNT failed to rescue AHRR-dependent repression of AHR [12]. Repression of CYP1 activity in human skin fibroblast was not correlated with AHRR expression levels [13]. A similar lack of correlation was reported between AHRR expression and CYP1A1 responsiveness in mice exposed to the AHR agonist, benzo[a]pyrene [14]. It is important to note that these studies reported AHRR mRNA but not protein levels. Ahrr-deficient mice exhibited tissue-specific increases in CYP1A1 mRNA induction compared with wild-type mice [15], suggesting that alternative mechanisms regulate AHR transactivation in other tissues. The effect of AHRR loss on the expression of other genes in the “AHR gene battery” has not been reported.

In an effort to find alternative AHR target genes that might influence AHR transactivation, we began studying TCDD-inducible poly (ADP-ribose) polymerase (TiPARP aka ARTD14) [16]. TiPARP is a member of the poly(ADP-ribose) polymerase family that use nicotinamide adenine dinucleotide (NAD+) as a substrate to catalyze the transfer of individual ADP-ribose units (referred to as mono-ADPribosyltransferase activity) and/or polymerization ADP-ribose onto target proteins [17]. ADP-ribosylation is important for many cellular activities including DNA repair, transcription, apoptosis, proliferation and cell death [18]. We recently found that TiPARP exhibited mono- ADP-ribosyltransferase rather than poly(ADP-ribose) polymerase activity [19]. More interesting were the findings that RNAi-mediated knockdown of TiPARP increased, whereas TiPARP overexpression repressed TCDD-induced CYP1A1 and CYP1B1 mRNA levels. TCDD-dependent induction of AHR target genes, including AHRR was also enhanced in immortalized Tiparp-/- mouse embryonic fibroblasts (MEFs) compared with wild-type cells. We also observed higher AHR protein levels and reduced TCDD-dependent proteolytic degradation in human cells exposed to RNAi targeting TiPARP and Tiparp-/- MEFs compared with control and wild-type cells, respectively [19]. Interesting, the ability of TiPARP to repress AHR signaling also required an intact catalytic domain [19]. However, the molecular targets of TiPARP and whether this enzyme post translationally modifies AHR or other components of the AHR signaling pathway remains to be determined. Post-translational modifications of transcription factors play important roles in regulating their activity, stability and ability to interact or recruit co-activator or co-repressor proteins. Phosphorylation of AHR is important for its ability to interact with AHREs and regulate reporter gene expression [20]. As mentioned above, AHR is ubiquitinated and proteolytically degraded. Similar to AHRR and ARNT, AHR has recently been reported to be sumoylated [21]. Sumoylation of AHR was reversed after TCDD treatment, suggesting that sumoylation may play an important role in regulated constitutive or ligand independent function. It will be important to identify the cellular targets of TiPARP and determine if AHR is subject to ADP-ribosylation as well as how ADP-ribosylation may influence the ubiquitination and/or sumoylation of AHR.

Collectively, the recent analysis of TiPARP reveal that it is a negative regulator of AHR signaling and part of a new negative feedback loop involving the proteolytic degradation of AHR. It will be important to determine the specificity of TiPARP to repress AHR transactivation and if TiPARP functions as a transcription repressor for other transcription factors. Careful analysis of the influence of TiPARP loss on the “AHR gene battery” will be essential to determine the impact of TiPARP as a global repressor of AHR transactivation. Moreover, comprehensive studies of Tiparp-/- mice will be necessary to confirm the in vitro repressive function of TiPARP as well as determine whether Tiparp-/- mice also exhibit increased sensitivity to TCDD toxicity. TiPARP may represent an alternative therapeutic target to modulate AHR signaling in human diseases.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 11665
  • [From(publication date):
    January-2013 - Dec 14, 2017]
  • Breakdown by view type
  • HTML page views : 7886
  • PDF downloads : 3779
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version