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Introduction
Complex-I is the first enzyme of the mitochondrial respiratory 

chain. The enzyme catalyzes the transfer of electrons from NADH to 
ubiquinone [1] in the inner mitochondrial membrane and conserves 
the free energy, so made available, as a transmembrane electrochemical 
proton gradient (∆µH+) which is utilized to make ATP from ADP in 
the mitochondrial process of oxidative phosphorylation (OXPHOS) 
[2]. In human cells the ATP produced by OXPHOS covers, under 
physiological conditions, more than 80% of the ATP that cells need. This 
requirement is particularly stringent in organs like the human brain.
Mammalian complex-I is made up of 38 subunits encoded by nuclear 
genes and 7 subunits encoded by mitochondrial genes [3,4]. With so 
many genes involved, one might expect that complex cellular processes 
are involved in the control of complex-I biogenesis and function whose 
understanding is of interest given the fundamental role played by the 
complex in the control of cellular physiopathologic events like cell 
growth and death, aging, and pathogenesis of tumors and neurological 
diseases [5]. Dysfunctions of complex-I encompass more than 30% 
of hereditary mitochondrial encephalopathies. Complex-I defects 
have also been observed in other neurological disorders like sporadic 
and familiar Parkinson Disease (PD), Hereditary Spastic Paraplegia, 
Friedreich Ataxia, as well as in aging [5-8].

Alternative splicing is a critical process in the complexity and 
function of the eukaryotic genome [9]. A precursor mRNA, transcribed 
from a single gene, can be processed to generate alternative splicing 
(AS) transcripts, some of which encoding for different proteins. More 
than one alternative splice isoforms can be maintained concurrently in 
the steady-state mRNA pool of a single tissue or cell type, and changes 
in the isoform ratios have been associated with physiological variation 
and susceptibility to disease [10-12]. Splice sites are recognized 
through their consensus sequence which is, however, rather ill defined. 
Pre-mRNAs usually exhibit cis-acting elements which according to 
their location and activity are referred to as intronic/exonic splicing 
enhancers (ISEs/ESEs) or intronic/exonic splicing silencers (ISSs/
ESSs). These are typically recognized by the members of two protein 
families, namely the heterogeneous nuclear ribonucleic particle 
proteins (hnRNP) and the Serine/Arginine rich protein family [13]. 
The competition between ESEs/ISEs and ESSs/ISSs ensures authentic 
splice sites recognition and alternative splicing regulation. 

Approximately one third of AS transcripts have the potential to 
introduce a premature termination codon (PTC), which can elicit 
nonsense-mediated mRNA decay (NMD) [14]. NMD is a cytoplasmic, 
post-transcriptional mRNA surveillance system which destabilizes 
transcripts containing PTCs, thus protecting cells from the production 
of aberrant truncated proteins [15]. The core of the human NMD 
machinery is constituted by the hUPF1, hUPF2 and hUPF3 proteins 
[16]. During pre-mRNA maturation exon-junction complexes (EJCs) 
are deposited 24 nucleotides upstream of exon-exon junctions (EJs) 
[17,18]. These EJCs are displaced from the transcript during the first 
round of translation by the ribosomes [19]. If translation terminates 
prematurely more than 55 nt upstream of the last exon-exon junction, 
EJC proteins, including hUPF3 and hUPF2, remain associated with the 
mRNA. Under such circumstances, the PTC is recognized by the SURF 
complex, which consists of the phosphoinositide 3-kinase-related 
protein kinase SMG1, UPF1 and translation termination factors eRF1 
and eRF3 [20]. SMG1 and UPF1 constituents of SURF subsequently 
bind the PTC distal EJC [21]. This binding triggers, only in the case of 
a PTC, SMG1-mediated phosphorylation of UPF1 with translational 
repression and mRNA decay [21].

Most predicted PTC-introducing alternative splicing events appear 
as cellular noises produced at low level by inefficient splicing during the 
post-transcriptional processing independently of NMD [22,23]. There 
is evidence that only a relatively small proportion of PTC containing AS 
gene transcripts are subjected to NMD disruption [24]. It has, in fact, 
been found that absence of the NMD SMG1 factor induces expression 
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Abstract
In mammals, complex-I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 

supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein 
components, as well as of biogenesis factors, make complex-I a sensible pace-maker of mitochondrial respiration. 
The work reviewed here shows that the Alternative Splicing and Nonsense Mediated Decay pathways regulate the 
transcription products of different nuclear genes encoding subunits of complex I. Complex-I dysfunction has been 
found to be associated with several human diseases. Involvement of altered pattern of transcription products of 
complex-I genes in pathogenetic mechanisms of these diseases is examined.

Alternative Splicing and Nonsense Mediated Decay in Mitochondrial 
Complex-I Biogenesis and its Implication in Human Diseases
Damiano Panelli1,3*#, Francesca Paola Lorusso1#, Francesco Papa1, Anna Maria Sardanelli1 and Sergio Papa1,2,3

1Department of Basic Medical Sciences, Section of Medical Biochemistry, University of Bari Aldo Moro, P.zza G. Cesare 11, Bari, 70124, Italy
2Institute of Biomembranes and Bioenergetics, Italian Research Council, Piazza G. Cesare 11, Bari, 70124, Italy
3Institute of Mitochondrial Medicine, Viale Della Repubblica 60/A, Bari, 70125, Italy
#These authors contributed equally to this work

Journal of 
Bioanalysis & BiomedicineJo

ur
na

l o
f B

ioanalysis & Biom
edicine

ISSN: 1948-593X



Citation: Panelli D, Lorusso FP, Papa F, Sardanelli AM, Papa S (2013) Alternative Splicing and Nonsense Mediated Decay in Mitochondrial Complex-I 
Biogenesis and its Implication in Human Diseases. J Bioanal Biomed S3: 006. doi:10.4172/1948-593X.S3-006

Page 2 of 7

J Bioanal Biomed                                                                                                                            ISSN:1948-593X JBABM, an open access journalMechanisms and Gene Regulation: 
Normal and Pathogenomics

changes of only 9% of the predicted PTC-containing AS products, and 
only 2% of these show level changes higher than 20% [24]. In this case 
the PTC-containing splice isoforms would physiologically be produced 
by the gene to control its expression in a constitutive or regulated 
manner. This process is referred to as hUPF1-dependent AS-coupled 
NMD [25]. The genes associated with this type of regulation include 
those encoding splicing factors [26,27]. Recently it has been found 
that genes with a variety of non-splicing functions are also regulated 
by UPF1-dependent, AS-coupled NMD. Among these genes there are 
those associated with intracellular signaling, membrane dynamics, 
cell death, DNA repair, transcriptional regulation, and metabolism 
[24,28,29]. These findings demonstrate that, in vivo, AS-coupled NMD 
controls genes of diverse functional categories and may have additional 
secondary effects on gene expression.

Different Complex-I Genes Produce Alternative 
Splicing Isoforms

An extended analysis of all the 38 nuclear genes encoding for 
the structural subunits of mitochondrial complex-I has revealed that 
many if not all of them produce in physiopathological conditions 
different splicing isoforms with or without PTC in the frame [28-30]. 
In particular our group detected and analyzed alternative splicing 
isoforms of at least 12 genes (Ndufa3, Ndufa13, Ndufa8, Ndufs2, 
Ndufs4, Ndufa4, Ndufa12, Ndufb6, Ndufv1, Ndufa5, Ndufb11, Ndufa7) 
(Table 1). A number of PTC-containing complex-I AS transcripts have 
been identified as novel NMD substrates [28,29]. On the other hand 
some genes (Ndufa4, Ndufa5, Ndufa12, Ndufb6, Ndufb11) are able to 
produce different AS isoforms without PTC in the frame and NMD 
insensible (Table 1). What is the function of this substantial amount 

of alternative splicing products, with or without PTC generated by 
complex-I gene remains unknown. In some cases, considering the low 
level of expression this would represent mis-splicing or cellular noise. 
In other cases as for example the Ndufs4 gene [28], and the Ndufb11 
gene [30] the alternative splicing transcripts identified could have a 
role in the regulation of the complex-I biogenesis and their altered 
expression could be involved in the pathogenetic mechanism of 
diseases associated with complex-I defect.

Regulation of the Ndufs4 gene expression by coupling of 
alternative splicing and NMD

The nuclear Ndufs4 gene encodes for one of the 45 subunits of 
mitochondrial complex-I [31], which is an essential component for 
the overall architecture of the complex [32] and hotspot for mutations 
in complex-I deficiency [33]. The Ndufs4 gene produces a canonical 
mRNA as well as three PTC-containing alternative transcripts (Figure 
1A) [34]. Two, SV1 and SV2, are regulated in the cytoplasm by the 
NMD process. A third transcript, SV3, NMD insensible appears to be 
regulated in the nucleus by a hUPF1 dependent process which affects 
the quantity of the transcript rather than its stability [28]. Interesting 
in NMD-hUPF1 factor depleted cells up-regulation of three PTC-
containing isoforms is associated with significant down-regulation of 
the canonical transcript free of PTC [34]. These data underscore the 
possible involvement of the hUPF1 dependent AS-coupled NMD in 
the post-transcriptional regulation of the Ndufs4 expression. In the 
simplest case, it is possible that some constant fraction of the gene’s pre-
mRNA is spliced into an unproductive, NMD-targeted form to regulate 
the normal protein level produced by the gene. It cannot be excluded, 
however, that the proportion of the transcripts targeted for degradation 
might be regulated by an external input. It has to be recalled here that 
the Ndufs4 gene encoding for a 18kDa subunit is involved in the last 
step of complex-I assembly [32]. The level of the protein is therefore 
critical for a functional respiratory complex. A similar regulation 
was observed also for the Ndufa5 where an up-regulation of a NMD 
insensible AS#17 isoform as well as of the NMD sensible AS#15 and 
AS#16 was associated with down-regulation of the canonical transcript 
(Figure 1B) [29]. It is plausible that AS-coupled NMD regulation of the 
Ndufa5 gene is constitutive but as underscored with the Ndufs4 gene it 
cannot be excluded a responsive gene expression. Further studies will 
be needed to clarify this issue.

In hUPF1 knockdown cells decreased level of different complex-I 
canonical transcripts (Ndufa12, Ndufb6 and Ndufa5) with no PTC 
[29] was observed, consistent with two previous different microarray 
profiling studies showing that transcripts level of at least 6% and 9% 
of the human genes, not associated with PTC-introducing AS events, 
are increased or decreased upon depletion of hUPF1. It is possible 
that the effects observed by our group on the level of complex-I 
gene transcripts are a consequence of a role of AS-coupled NMD, 
UPF1 dependent, in regulating transcription factors [24]. The data 
presented provide evidence showing that NMD is involved not only in 
maintaining the transcriptome integrity by removing non-functional 
and aberrant PTC-bearing transcripts, but also in transcriptional 
as well as post-transcriptional control of different complex-I genes 
expression. Preliminary analysis have shown, in fact, that the mis-
regulation of complex-I genes, induced by siRNA silencing of hUPF1, 
is accompanied with depression of complex-I enzymatic activity [29].

Gene AS isoform PTC NMD sensible References

NDUFA3 AS#1 + + [29]

NDUFA13 AS#2 + + [29]

NDUFA8 AS#3 + + [29]

NDUFS2
AS#4 + + [29]

AS#5 + +

NDUFS4

AS#6 (SV1) + + [28,34]

AS#7 (SV2) + +

AS#8 (SV3) + -

NDUFA4 AS#9 - - [29]

NDUFA12
AS#10 + + [29]

AS#11 - -

NDUFB6
AS#12 - - [29]

AS#13 - -

NDUFV1 AS#14 + + [29]

NDUFA5

AS#15 + + [29]

AS#16 + +

AS#17 - -

NDUFB11

Short 153 aa 
coding - - [30]

Long 163 aa 
coding - -

NDUFA7 // + + [28]

Table 1: Complex-I genes showing alternative splicing isoforms. The presence of 
PTC and NMD susceptibility are also indicated.
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Regulation of the Ndufb11 gene expression by Alternative 
Splicing and its possible involvement in the apoptotic process

The human X-linked Ndufb11 gene encodes for a 153 amino acid 
(aa) protein which appears to play a role in the assembly of a functional 
and stable mammalian mitochondrial complex-I [35-37]. The human 
gene produces, in addition to the transcript encoding the conserved 
153 aa protein, another transcript, PTC-free, encoding a protein of 
163 aa. The two transcripts differ in the last 30 nucleotides of exon 
2 and are the products of alternative splicing at the 5′ splice site of 
exon 2. The short, 153 aa coding, transcript utilizes an upstream 5′ 
splice site (5′ss 2S) while the long, 163 aa coding, transcript utilizes a 
downstream splice site (5′ss 2L) (Figure 2A) [30]. The short Ndufb11 
transcript is predominantly expressed in several tissues with respect to 
the long transcript [38]. The ability of the Ndufb11 gene to produce 
high level of the short isoform with respect to the long isoform appears 
to be due to the presence between the two 5′ss of three G run, ESS 
elements, apt to bind the hnRNPH1 protein and to prevent the choice 
of the downstream 5′ss, although this is a better consensus site (Figure 

2A) [30]. Rotenone affects the ratio of the Ndufb11 isoforms only in 
the neuronal SH-SY5Y cells, increasing the relative amounts of the 
long versus the short transcript [30]. Since rotenone treatment in 
the SH-SY5Y cells down-regulates the expression of the hnRNPH1 
protein it is likely that the rotenone induced shift in the ratio of the 
short vs. the long Ndufb11 isoforms, is associated with the depressed 
capacity of hnRNPH1 to regulate the alternative splicing of the gene. 
Rotenone treatment of SH-SY5Y cells induces apoptotis [39,40]. In 
humans cells more than 200 proteins are involved in apoptosis [41]. 
A large number of apoptotic factors are regulated by alternative 
splicing, a process that allows for the production of protein isoforms, 
often with distinct functions, from a common mRNA precursor. The 
abundance of apoptosis genes, that are alternatively spliced, and the 
frequent antagonistic roles of protein isoforms strongly suggest that 
alternative splicing is a crucial mechanism in regulating life and death 
decisions [41]. In the case of the Ndufb11 gene it is possible that its 
post-transcriptional regulation is involved in the apoptotic process. 
The two different proteins produced by the Ndufb11 gene might have, 
in fact, a different impact on complex-I function. Over expression of 

Ndufa5 canonical mRNA

Ndufa5 AS#15

Ndufa5 AS#16

Ndufa5 AS#17

Ndufs4 canonical mRNA

Ndufs4 AS#6 (SV1)

Ndufs4 AS#7(SV2)

Ndufs4 AS#8 (SV3)

NDUFS4 alternative splicing

NDUFA5 alternative splicing

A

B

1 2 3 4 5

Crypto-exon

1 2 3 4 5

4 5

4 5

4 5

1 2 3

1 2 3

1 2

1 2 3 4 5

1 2 3 4 5

1 3 4 5

Figure 1: Organization of the human Ndufs4 and Ndufa5 locus and its alternative splicing pathways. Bars represent exons and lines introns. The canonical exons 
are numbered. (Panel A) The Ndufs4 alternative splicing is oform AS#6 and AS#7 (Splice Variants 1 and 2) result from the insertion between exon 2 and exon 3 of 
a crypto-exon which uses two alternative acceptor sites. The AS#8 (Splice Variant 3) derives from exon 2 skipping [34]. (Panel B) The Ndufa5 alternative splicing 
isoforms AS#15 and AS#16 result from the insertion between exon 2 and exon 3 and between exon 3 and exon 4 respectively of a non-canonical exon. The AS#17 
derives from exon 3 skipping [29].
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the 163 aa subunit has been found to induce a down-regulation of 
the complex-I enzymatic activity and an overproduction of ROS. In 
a preliminary analysis we have found that higher levels of the 163 
aa expression compared to the 153 aa protein, resulted in decreased 
cell viability. However, the 163 aa subunit transfectants maintained 
viability and did not undergo apoptosis. It has been demonstrated in 
other systems that overexpression of pro-apoptotic protein is unable 
to induced apoptosis. For example overexpression of the Bcl-xs protein 
sensitized the cells to drugs-induced apoptosis but was unable alone to 
induced by itself cell death [42]. In the same manner overexpression 
of the 163 aa subunit could sensitize the SHSY-5Y cells to rotenone-
induced apoptosis. Mitochondrial disruption is a hallmark of caspase-
dependent apoptosis [43]. The mitochondrial outer membrane 
(MOM) is disrupted, causing the release of proapoptotic molecules 
such as cytochrome c, AIF, HtrA2/Omi, Smac/Diablo, and endoG. 
Released cytochrome c activates caspase-9. At the same time, damaged 
mitochondria generate excessive reactive oxygen species (ROS) and the 
mitochondrial transmembrane potential (ΔΨm) dissipates. Complex-I 
function is a determinant in the apoptosis process since different 
death’s signals affect the activity of the complex [44,45]. In addition 

proteins, like AIF (Apoptosis induced factor) involved in apoptosis 
are also found in purified complex-I [46]. The killer lymphocyte 
protease granzyme A (GzmA) triggers caspase-independent target 
cell death, with morphological features of apoptosis. GzmA reaches 
the mitochondrial matrix where it cleaves the NDUFS3 protein, 
an iron-sulfur subunit of the NADH: ubiquinone oxidoreductase 
complex I, inducing deficit of NADH oxidation and overproduction 
of the superoxide anion [47]. It is possible that the alternative splicing 
regulation of the Ndufb11 genes might enter in this circuit. Normally 
the AS isoform encoding the 163 aa protein is maintained to low level 
with respect the 153 aa protein. Apoptosis signals might modulate the 
alternative splicing of the Ndufb11 gene and shift the 153/163 ratio; in 
this contest the 163 aa protein might compete with the 153 aa protein, 
inducing production of ROS by complex-I and facilitating apoptosis.

Pathological Implication
Alternative splicing and NMD variation in neurological 
disease

Approximately 33% of inherited and acquired diseases are 
associated with premature termination codons (PTCs), which truncate 
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Figure 2: (Panel A) Schematic representation of the Ndufb11 alternative splicing and its regulation; boxes represent exons and lines introns. The arrows indicate 
the upstream 5′ splice site (2S) and the downstream 5′ splice site (2L) in exon 2. The three G run elements binding the hnRNPH1 protein between the two 5′ ss in 
exon 2 regulate the level of the Ndufb11 isoforms, promoting the selection of the weak 5′ ss (2S) and inhibiting the strong 5′ ss (2L). Rotenone treatment induces a 
down-regulation of the hnRNPH1 protein and induces the splicing mechanism to recognize the 5′ ss 2L with a shift of the short 153 aa coding/long 163 aa coding ratio. 
(Panel B) Scheme indicating the exonic 44 G→A, 289/290 DelG and intronic IVS1nt-1,G→A Ndufs4 mutations.
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the ORF and preclude synthesis of full-length proteins [48]. PTCs 
can originate as a result of various types of alterations in germline or 
somatic DNA. A frame shift mutation can result in a PTC. A single-
base pair nonsense mutation that converts a sense codon to a nonsense 
codon also generates a PTC. A mutation within either an intron 
or an exon that results in inefficient or inaccurate intron removal 
from pre-mRNA can create an intron-derived PTC or a shift in the 
ORF and a PTC downstream of the shift [13,49]. Most PTCs elicit 
nonsense-mediated mRNA decay (NMD). NMD reduces the level 
of PTC-containing mRNA to 5-25% of the normal (PTC-free) level 
and, thus, reduces synthesis of the encoded truncated protein. Indeed, 
the phenotypic severity of a number of diseases caused by nonsense 
mutations correlates with the extent of reduction in the level of mRNA 
from the mutant allele [50-52].

Leigh Syndrome is an infantile neurodegenerative disease due to 
mutations in nuclear or mitochondrial genes involved in mitochondrial 
energy metabolism. In particular it has been observed that the Ndufs4 
gene of complex-I is a hotspot of mutations in the Leigh syndrome 
[33] resulting in the depletion of the gene product, disassembly of 
complex-I and reduction of its enzymatic activity [32]. A study of the 
Ndufs4 transcripts in the fibroblasts from three patients affected by 
Leigh syndrome harboring three different mutations, introducing a 
PTC in the gene (Figure 2B), revealed pathological implication of the 
AS-coupling NMD mis-regulation. In a patient with a point deletion 
at position 289/290 in exon 3 introducing a PTC, the transcript level 
was much reduced as compared to control cells [32]. The introduction 
of the PTC in the middle of the transcript elicited its degradation by 
NMD [32]. This explains the disappearance of the 18 kDa (AQDQ) 
protein from the patient’s cells [32]. In another patient with a 44G→A 
non-sense mutation in the first exon, disappearance of the mature 
protein was expected. This mutation which introduced a PTC very 
close to the canonical AUG start codon, rather than eliciting NMD 
degradation of the canonical mRNA, up-regulated the three PTC 
containing alternative transcripts generated by the gene and described 
in the introduction [34]. The 44G→A non-sense mutation, in fact, 
inactivated in the patient fibroblasts NMD degradation of SV1 and 
SV2 and nuclear down regulation of SV3 [28,34]. In a patient with 
a homozygous splice acceptor site mutation in intron 1 (IV Snt-1, 
G→A) of the Ndufs4 gene only a mRNA transcript, in which exon 2 
was skipped, was detected [53]. Amplification of this transcript and 
sequencing showed that it corresponded exactly to the PTC containing 
SV3 isoform detected in the patient with 44G→A nonsense exonic 
mutation in the Ndufs4 gene [28]. Also in this case the SV3 isoform was 
insensible to the NMD degradation. The accumulation of the aberrant 
alternative transcripts, caused by the exonic or the intronic mutation in 
the Ndufs4 gene, can represent another deleterious event contributing 
to the pathogenetic mechanism of the mutations in neurological 
diseases and this correlation underscores the possibility that the NMD 
pathway may be an attractive target for therapeutic manipulations of 
genetic defects introducing a PTC.

Alternative splicing isoform ratio variation in neurological 
disease

Parkinson’s disease (PD) is a neurodegenerative disorder resulting 
from the death of dopamine-generating cells in the substantia nigra [6]. 
Different genes have been implicated in the familiar form of PD [54]. 
However the mechanisms that underlie the neuronal degeneration in 
the majority of cases, sporadic PD, are still unknown. Neuronal cells 
exhibit particularly high levels of alternative RNA splicing products 

[55,56]. A large scale study of human tissues showed, indeed, that 
the brain presents the highest degree of alternative splicing among 11 
tested tissues [57]. These observations suggest that alternative splicing 
might play a crucial role in the control of gene expression in neuronal 
cells [58,59]. The importance of alternative splicing in regulating 
gene expression in human brain is illustrated by a growing number 
of neurological diseases associated with abnormal mRNA patterns. 
Massive splicing changes in PD blood cells [60], as well as alteration 
in the expression of parkin splice variants, in sporadic Parkinson 
disease (PD) [61,62] and in dementia with Lewy bodies (DLB) [63,64] 
have been observed. Gene-array studies have demonstrated that cells 
overexpressing LRRK2 wild-type protein or G2019S mutant protein, 
which cause 7% of familial PD cases, have a different effect on alternative 
splicing, associating the G2019S mutation with altered splicing of key 
neurodegenerative genes including a gene of mitochondrial complex-I 
[65]. A link between environmental insults and alternative splicing 
has been identified. The treatment of neuronal cells with rotenone, a 
pesticide to generate models of PD, has been shown to decrease the 
exon inclusion in a number of genes [66]. Indeed, AS alteration of 
complex-I Ndufb11 or Ndufs4 genes has been observed in models 
of PD [30,67]. These data suggest that in PD there may be problems 
associated with mRNA splicing of key genes, including genes of 
complex-I subunits. Different research groups work on identification 
of biomarker transcripts associated with risk of PD. For example it has 
been proposed to consider alternative splicing of the SRRM2 protein 
as a biosignature for PD [68] as well as a network centered on the 
transcription factors HNF4A and TNF [69]. Since of numerous AS 
transcripts, complex-I genes could represent a considerable source of 
biomarkers in PD. 

Conclusions
What presented provides an appraisal of the regulation by 

Alternative Splicing and NMD pathways of the expression of 
different complex-I genes in human cells. The control of complex-I 
genes by these two biochemical pathways may have far reaching 
implications in human pathophysiology. Complex-I is apace-maker 
of the overall activity of mitochondrial oxidative phosphorylation 
and with its abundance of structural and ancillary proteins offers the 
prerequisites to respond to a variety of gene expression mechanisms. 
Regulation of complex-I by Alternative splicing and NMD pathways 
is a new emergent area of the complex network of regulatory processes 
governing complex-I function and biogenesis, contributing to its 
vulnerability to gene mutations, as well as to sporadic, endogenous and 
exogenous factors. 
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