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Introduction
In the literature, abundant studies exist concerning probabilistic 

models in genetics. These have mainly investigated model building 
and the statistical estimation of gene frequencies. However, in to 
our opinion, experimental design problems have not been examined 
sufficiently. Against this background, this study is performed. We 
evaluate the estimation of the gene frequencies of sex-linked recessive 
traits and our basic assumption is that the trait is monogenic and 
recessive. Such a trait has markedly different phenotype frequencies in 
the male and female segments of the population. This is caused by the 
fact that if the trait is recessive and has a gene frequency p in the total 
population, then the frequency of affected individuals is p among males 
and p2 among females. Consequently, direct comparisons of phenotype 
frequencies between males and females are of no value; e.g. the genes 
for colour-blindness and for blood group Xg are sex-linked, being 
located on the X chromosome.

We discuss and compare the maximum likelihood estimators 
of the gene frequency for mixed, male, and female samples. Among 
geneticists there is consensus that colour-blindness is not a monogenic 
trait. Kalmus (1985, p. 63) discussed whether the genes responsible for 
protan or deutan defects represent one common series of alleles on 
the X-chromosome or two separate series. He stated that the two-loci 
hypothesis seems better supported. The possibility to test the genetic 
model is crucial, and we give alternative methods for model testing. We 
analyse the loss in efficiency when both estimation and testing must be 
performed. The results obtained are applied to empirical data found in 
the literature [3,4].

Methods
Maximum likelihood estimation

The model: We consider a monogenic sex-linked recessive trait. 
We assume that we have a sample of size N consisting of M males and 
F females and that there are m1 males with a recessive phenotype, m2 
males with a dominant phenotype, f1 females with a recessive phenotype 
and f2 females with a dominant phenotype. If the gene frequency of the 
recessive trait is p among both males and females [5,6], then the genetic 
model is given in Table 1.

A mixed sample: If we ignore a proportionality factor 

independent of p, we obtain from Table 1 the likelihood function 

( ) 1
1 2 2

fm m f2 2L( p) p (1 p) p (1 p )= − − , with the restriction 0 < p < 1.

The function L(p)  can be written
1 1 2 2 2m 2 f m f fL( p) p (1 p) (1 p)+ += − + .                                (1)

The log-likelihood function l( p) log( L( p))=  is 

1 1 2 2 2l( p) (m 2 f )log( p) (m f )log(1 p) f log(1 p) 0 p 1= + + + − + + < <  
  (2)

If the log-likelihood function is written

( ) ( )2
1 2 1 2 M Fl( p) m log( p) m log(1 p) 2 f log( p) f log(1 p ) l ( p) l ( p)= + − + + − = +  ,  

  (3)

the first parentheses (lm(p)) contain the contribution of the male data 
and the second parentheses (lF(p)) the contribution of the female data. 
When we maximize l(p) in (2), we obtain

1 1 2 2 2(m 2 f ) (m f ) fdl( p)
dp p (1 p) (1 p)

+ +
= − +

− +
.    (4)

The condition dl( p) 0
dp

= , yields an algebraic equation of second 
degree

2 2 1 1m m 2 f
p p 0

M 2F M 2F
+

+ − =
+ +

.   (5)
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Abstract
The estimation of the gene frequency of sex-linked recessive traits is reconsidered. The estimation formulae for 

mixed, male, and female samples are presented and compared. Optimal designs for efficient estimation are studied. 
Male samples are optimal for gene frequencies below 1/3 and female samples for frequencies above 1/3. Mixed 
samples are never optimal. The model testing problem is discussed. Mixed samples are necessary for model testing. 
We analyse the loss in efficiency when both estimation and testing must be performed. In general, our results indicate 
that mixed samples should contain an excess of males. The results obtained are applied to empirical data found in the 
literature [1,2].

Males Females
Number Affected Not affected Number Affected Not affected

Observed M m1 m2 F f1 f2

Theoretical M Mp M(1-p) F Fp2 F(1-p2)

Table 1: Observed and expected number of subjects according to a monogenetic 
recessive sex-linked trait. Affected individuals have recessive and not affected indi-
viduals have dominant phenotypes.
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This equation has two roots, one negative outside the admissible 
region (0,1) and one positive. The positive root is 

2
2 2 1 1

2

m m m 2 f
p̂

2( M 2F) M 2F4( M 2F)
+

= − + +
+ ++

.                (6)

The upper limit of p̂  is
2

2 2 1 1 1 1
2

m m m 2 f m 2 f
p̂ 1

2( M 2F) M 2F M 2F4( M 2F)
+ +

< − + + = <
+ + ++

Consequently, ˆ0 p 1< <  and p̂  belongs to the admissible interval 
(0,1). This estimation result was given by Haldane (1963). One obtains 

2
1 1 2 2 2

2 2 2 2

(m 2 f ) (m f ) fd l( p)
dp p (1 p) (1 p)

+ +
= − − −

− +
                  (7)

and 
2

2

d l( p) 0
dp

≤ . Consequently, the unique solution p̂  maximizes l(p)  

(and L(p)). If we accept the model, we can estimate the estimator 
variance. We have 

1
2

2

d l( p)ˆVar( p) E
dp

−
  

= −  
  

.                  (8)

From (7) and (8), we get the information
2 2 2

2 2 2

2

2 2

d l( p) Mp 2Fp M(1 p) F(1 p )I E
dp p (1 p)

F(1 p ) M 4F
p(1 p)(1 p) 1 p

  + − + −
= − = +  − 

−
+ = +

−+ −

.                  (9)

If we introduce Mx
N

=  and F1 x
N

− = , we obtain

2

2 2

2

d l( p) xN 4(1 x)NE I( x, p)
p(1 p)dp 1 p

x 4(1 x)N
p(1 p) 1 p

  −
− = = +  − − 

 −
= + − − 

 .                (10)

We note that for high values of x (a majority of males) the 
information is high for low values of p and that for low values of x (a 
majority of females) the information is high for high values of p. Later, 
we will discuss this observation in more detail. 

The inverse of I(x,p) yields the variance
1

1
2

1

2

xN 4(1 x)NˆVar( p) V( x, p) I( x, p)
p(1 p) 1 p

1 x 4(1 x)
N p(1 p) 1 p

−

−

−

 −
= = = + − − 

 −
= + − − 

(11)

The estimator p̂  is asymptotic normal and the variance ˆV( p) can 
be estimated by using p̂  instead of p in (11). Haldane (1963, formula 
(5)) gives a slightly different estimate of ˆVar( p) . His formula contains 
the observed frequencies and is, in to our opinion, not altogether 
satisfactory. In fact, he estimates p with 

Mp̂  given below in (13) in the 
“male part” of the formula and with 

Fp̂  given in (16) in the “female 
part” of the variance formula (c.f. formula (11)).

A male sample: If we consider a male sample and ignore the 
proportionality factor, which is independent of p, we obtain from (2) 
the log-likelihood function

M 1 2l ( p) m log( p) m log(1 p)= + − .                (12)

When we maximize lM(p), we get the “male” estimator

1
M

m
p̂

M
= ,                 (13)

with the information M
MI

p(1 p)
=

−
 and the well-known variance

M
p(1 p)ˆVar( p )

M
−

= .                  (14)

The estimator 
Mp̂  is asymptotic normal and the variance M

ˆV( p )  in 

(14) can be estimated by using 
Mp̂  instead of p. 

A female sample: If we consider only the female part of the sample 
and ignore the proportionality factor, which is independent of p, we 
obtain from (3) the log-likelihood function [7,8]

2
F 1 2l ( p) 2 f log( p) f log(1 p )= + − .                    (15)

If we maximize the log-likelihood function, we obtain the “female” 
estimator

1
F

f
p̂

F
= ,                    (16)

with the information F 2

4FI
1 p

=
−

 and the variance
2

F
1 pˆVar( p )

4F
−

= .                 (17)

The estimator Fp̂  is consistent, efficient and asymptotic normal and 

the variance F
ˆV( p )  in (17) can be estimated by using Fp̂  instead of p. 

According to Huether and Murphy (1980), it is not clear how rapidly 
these asymptotic properties are approached with increasing sample 
size. The log likelihood equation (15) yields an unbiased estimate  

2 1
F

f
p

F
=



 of p2, but   in (16) is biased with a negative bias. Haldane (1956) 
proposed an improved estimate [9,10]

1
F

4 f 1
p

4F 1
+

=
+

 .                    (18)

In order to improve the ML estimates, Huether and Murphy 
proposed a jackknife procedure. Their estimate is, using our notations.

1 1 1 1 1
F

f f f 1 F f f
p F ( F 1)

F F F 1 F F 1

 − −
= − − +  − − 

 .              (19)

How these improvements influence our gene estimates will 
be discussed in the Discussion section. Eq. (9) indicates that the 
information obtained for the whole data set is M FI( x, p) I I= + . This 
is a consequence of the male and female data sets being independent.

Model testing

A mixed sample: In the mixed data set, there are two degrees of 
freedom because the row sums for males and females are fixed. After 
the estimation of p, one degree of freedom remains. According to Table 
1, the model can be tested by the quantity [11]

2 2 2 2
2 1 1 2 2 1 1 2 2

1 2 1 2

ˆ ˆˆ ˆ(m m ) (m m ) ( f f ) ( f f )
ˆ ˆˆ ˆm m f f

χ
− − − −

= + + + ,              (20)

where ( )and2 2
1 2 1 2

ˆ ˆˆ ˆ ˆ ˆˆ ˆm Mp, m (1 p)M, f Fp f F 1 p= = − = = − .

Under the null hypothesis that the model holds, this quantity is 
approximately 

2χ distributed with one degree of freedom. 

The model can also be tested by the Likelihood Ratio Test (LRT). 
Consider 

M F

M F

M F
p p

M F
p , p

sup L( p , p )

sup L( p , p )
Λ == ,

Where

 1 2 1 2m m 2 f f2
M F M M F FL( p , p ) p (1 p ) p (1 p )= − − .

The maximizations give



Citation: Fellman J (2012) Analysis of Sex-Linked Recessive Traits: Optimal Designs for Parameter Estimation and Model Tests. J Biomet Biostat 
3:146. doi:10.4172/2155-6180.1000146

J Biomet Biostat
ISSN:2155-6180 JBMBS, an open access journal

Page 3 of 6

Volume 3 • Issue 5 • 1000146

1 1 2 2 2

1 2 1 2 2

m 2 f m f f

m m 2 f f f
M M F F F

ˆ ˆ ˆp (1 p) (1 p)
ˆ ˆ ˆ ˆ ˆp (1 p ) p (1 p ) (1 p )

Λ
+ +− +

=
− − +

,               (21)

Where p̂ , Mp̂ , and Fp̂  are given in (6), (13), and (16), respectively. 
Under the null hypothesis, 2log Λ−  is approximately 2χ  distributed 
with one degree of freedom. In situations not far from the null 
hypothesis, the 2χ  tests based on (20) and (21) give similar results. In 
the applications, the formula (20) is used.

Separate male and female samples: If we estimate p separately 
for the male and female series, there is no degree of freedom left in 
either series. Consequently, if we test the hypothesis M F

ˆ ˆp p= , we must 
consider the difference M F

ˆ ˆp p−  with the variance
2

M F
p(1 p) 1 pˆ ˆVar( p ) Var( p )

M 4F
− −

+ = + .                (22)

Under the null hypothesis, M F

M F

ˆ ˆp p
z

ˆ ˆVar( p ) Var( p )
−

=
+

 is standard 

normal. 

If we accept the null hypothesis M F
ˆ ˆE( p ) E( p ) p= = , then we can 

obtain a weighted estimate of the common gene frequency p. To 
minimize the variance of the weighted estimate, the weights should be 
the inverses of the variances in (14) and (17). The weighted estimate is

F M2

2

4F Mˆ ˆp p
p(1 p)1 p

p
4F M

p(1 p)1 p

   
+   −−   =
+

−−



,                     (23)

and its theoretical variance is 
1

2

M 4FV( p)
p(1 p) 1 p

−
 

= + − − 
 , which is identical 

to (11). The estimator p̂ maximizes L( p) and ˆL( p) L( p)≤ , but the weighted 
estimator p  and the Haldane estimator p̂  have asymptotically the 
same efficiency. Consequently, both estimators are best asymptotic 
normal (BAN). 

Design of experiments

In connection with another type of genetic problem, Brown (1975) 
considers efficient experimental designs for the estimation of genetic 
parameters. We start from the same basic idea, but use different 
methods. In his book on colour-blindness, Kalmus (1965, p. 85) states, 
without further comments, that the population frequency for rare sex-
linked recessive traits must be based on male samples. Now we study 
this problem in more detail. We apply experimental design theory 
using the inference results in the preceding sections [12]. 

Designs for parameter estimation: Let us assume that we intend 
to investigate N (fixed) individuals and that the gene frequency is p. 
Now our problem is in what proportion M : F shall we include males 
and females in our sample in order to minimize the variance given in 
(11) or, alternatively, to maximize the information measure (9). We 

study the information I( x, p)  and the variance V( x, p)  as functions of 
p and x. From (9) we get

2 2

xN 4(1 x)N N( x(1 3p) 4 p)I( x, p)
p(1 p) 1 p p(1 p )

− − +
= + =

− − −
.             (24)

The function (24) is a linear function of x. For 
1p ,I( x, p)
3

<  is 

an increasing function of x and the maximum is obtained for x = 1, 

i.e. for a male sample. For 
1p ,I( x, p)
3

> is a decreasing function of 

x and the maximum is obtained for x = 0, i.e. for a female sample. 

For 
1p ,I( x, p)
3

=  is constant and all samples are equally good. Our 
optimal experimental design for parameter estimation is hence

(i) Use a male sample if  
1p
3

<

(ii) Use an arbitrary sample if 1p
3

=

(iii) Use a female sample if 1p
3

> .

We observe that the optimal design of the experiment depends on 
the true parameter value. This is common in non-linear situations, but 
in this case the dependence is very simple. In different populations, the 
frequency of colour blindness is about 0.08 so the rule (i) is in good 
agreement with Kalmu´s (1985) statement.

In practice, the problem is not so simple. Often when we start an 
investigation, we do not know the gene frequency. If we have prior 
information (from earlier studies) that the gene frequency is far in a 
known direction from one-third we can with confidence use a male or 
a female sample. If, however, we have no prior information or if the 
gene frequency is known to be in the neighbourhood of 1

3
, then it is 

difficult to decide whether to use a male or female sample. We can see 

in Table 2 that for the Xg blood group p is close to 1
3

, and this is a good 
example of this problem. 

Let us now analyse the efficiency of a mixed sample in more detail. 
Assume that the true gene frequency is p. Now, we have to compare   

2p(1 p )V( x, p)
N( x(1 3p) 4 p)

−
=

− +
with M

p(1 p)V ( p)
N
−

=  if 
1p
3

<  and with 

2(1 p )V( x, p)
4N
−

=  if 1p
3

> , and we obtain the relative efficiencies for 

the mixed sample

 
x(1 3p) 4 pE( x, p)

(1 p)
− +

=
+  for  

1p
3

<

=1             for  1p
3

=                    (25)

x(1 3p) 4 p
4 p

− +
=            for 1p

3
> .

N Recessive Dominant p̂ / SD a) 2χ M F
ˆ ˆp / p b) SD p / SD c) Reference

Males 154 59 95 0.356021 0.88 0.383117 0.039175 0.355486 Mann et al., 1962
Females 188 21 167 0.025542 0.334219 0.034369 0.025836
Males 1751 620 1131 0.341226 2.62 0.354083 0.019206 0.334715 Noades et al., 1966
Females 1667 179 1488 0.008075 0.327687 0.011570 0.009911
Males 3513 1209 2304 0.340577 0.41 0.344150 0.013664 0.338743 Sanger et al., 1971
Females 3271 371 2900 0.005731 0.336780 0.008232 0.007051

a)Maximum likelihood estimate on the upper line and SD on the lower line
b)Male estimate on the upper line and female estimate on the lower line
c)Weighted estimate of Mp̂  and Fp̂  on the upper line and SD on the lower line 

Table 2: Xg in different studies.



Citation: Fellman J (2012) Analysis of Sex-Linked Recessive Traits: Optimal Designs for Parameter Estimation and Model Tests. J Biomet Biostat 
3:146. doi:10.4172/2155-6180.1000146

J Biomet Biostat
ISSN:2155-6180 JBMBS, an open access journal

Page 4 of 6

Volume 3 • Issue 5 • 1000146

If we must test the model, it is necessary to include in the sample 
both males and females. If this is done, there is a loss of efficiency 
relative to the best (but unknown) design. In general, if we compare a 
male sample, a female sample, and a mixed sample of the same size, then 
the efficiency of the mixed sample is always between the efficiencies of 
the single-sex samples.

In Figure 1, we see how the efficiencies depend on the gene 
frequency for the single-sex samples (x = 0 and x = 1) and for some 
mixed samples (x = 0.3333, 0.5155, and 0.6667). The choice of x = 
0.5155 and x = 0.6667 will be explained later. We observe that for 
small values of p the efficiency strongly depends on the true value of 

p. For 1p
3

< , the male sample is most efficient. For 
1p
3

> , the female 

sample is most efficient but the efficiency of a female sample is not as 
good as the efficiency of the male sample for 1p

3
< . Therefore, Figure 

1 supports the conclusion that, independently of the true value of p, if 
we want to play safe a mixed sample should contain an excess of males.

and to pursue 
x p

minmaxW( x, p) . This solution indicates that we are again 
playing safe. We expect the worst situation, i.e. that nature has chosen a 
p value that maximizes the variance, and consequently, we prepare for 
it and choose the strategy (x) that minimizes our loss (the variance). In 
other words, we want to answer the question: Which sample mixture   

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
p

Efficiency

maximin

x=0.000

x=0.333

x=0.667

x=1.000

x=0.5155

Figure 1: Efficiency as a function of the gene frequency p for different sample 

compositions (x = 0, 0.3333, 0.5155, 0.6667, 1), where Mx
M F

=
+

. 

Maximin corresponds to 
x p

2max minE( x, p)
3

= . For details, see the text.
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2

4
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Figure 2: Graphic representation of the function 3 2 8f ( x) x 6x 8x
3

= − + − . 
The root x 0.5155=  is easily recognized.
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Figure 3: Variance of the difference M F
ˆ ˆp p−  as a function of the gene frequen-

cy p for different sample compositions ( )x 0.2000, 0.3333, 0.5155, 0.6667 , 0.8000= . 

Minimax corresponds to min max
x p

0.8990667W( p,x)
N

= . For details, see the text.

For 1p
3

< , we have x(1 3p) 4 pE( x, p)
(1 p)
− +

=
+

  and 2

E 4 4x 0
p (1 p)
∂ −

= ≥
∂ +

, with 

equality for x = 1, i.e. the sample contains only male subjects. Hence, E(x,p) 

is an increasing function of p and E( x, p) E( x, 0) x≥ =  for 1p
3

< .

Similarly, we obtain for 1p
3

>  
x(1 3p) 4 pE( x, p)

4 p
− +

=  and 

2

E x 0
p 4 p
∂

= − ≤
∂

. Now, E(x,p) is a decreasing function of p and 

xE( x, p) E( x,1) 1
2

≥ = −  for 1p
3

> . From these results, it follows that 

m
xE( x, p) E min x,1
2

 ≥ = − 
 

. Hence, 
x p

2max minE( x, p)
3

= , and this value 

is obtained for 2x
3

=  and orp 0 1= .

Speaking in terms of game theory, the strategy of nature is the 
choice of p and our strategy is the choice of x, and E(x,p) is the pay-
off of the game. The 

x p
max minE( x, p)  solution indicates that we are 

playing safe. We expect the worst, i.e. that nature has chosen one 
extreme p value, and consequently, we prepare for it and choose the 
strategy that maximizes our gain (the efficiency). From this point of 

view, we should use a sample with 2
3

 males and 
1
3

 females. This mixed 

sample guarantees at least the efficiency 2
3

 (cf. Figure 1).

Designs for model testing: A sample consisting of both males and 
females is necessary if we have doubts about the model. The doubts 
may concern the simple recessive inheritance (cf. colour blindness), 
absence of selection (the same gene frequency in males and females), 
exact typing independent of the sex, or the non-existence of border 
cases that are difficult to type. If we have a mixed sample, we can then 
test the model as we have noted above. This is not possible with a male-, 
or female-only sample. This problem is a good example of the common 
situation that an experimental strategy, which is optimal for parameter 
estimation, is too restricted to be of any value for model testing.

If we want to test the model and to use  M F
ˆ ˆW( x, p) Var( p p )= −  given 

in (22) most efficiently under the null hypothesis, then we have to 
consider the variance

2p(1 p) 1 pW( x, p)
xN 4(1 x)N
− −

= +
−

                 (26)

This result can also be obtained in the following way. We consider 
the efficiency E(x,p) for a mixed sample as a function of p for a given x. 
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W( x, p) 1 2 p 2 p
p xN 4(1 x)N

∂ − −
= +

∂ −
 and W( x, p) 0

p
∂

=
∂

 gives 2(1 x)p( x)
4 3x

−
=

−
.

The corresponding W value is a maximum for 
2

2

W( x, p) 0
p

∂
<

∂
. This 

maximum maxW ( x), which depends on x, is 

( ) ( ) 2

max

p( x) 1 p( x) 1 p( x)W ( x) W p( x),x)
xN 4(1 x)N
− −

= = +
−

.

Now, we minimize maxW ( x)  by using the derivative 
maxdW ( x) W dp W
dx p dx x

∂ ∂
= +

∂ ∂
.

If we use the condition that 
p( x )

W 0
p

 ∂
= ∂ 

, the derivative reduces to 

2
max

2 2

dW ( x) W p(1 p) 1 p
dx x x N 4(1 x) N

∂ − −
= = − +

∂ −
.

Now, we solve the equation maxdW ( x)
0

dx
=  under the restriction 

2(1 x)p
4 3x

−
=

−
. The equation simplifies to

3 2 8x 6x 8x 0
3

− + − = .                  (27)

This equation of third degree satisfies the conditions 
8f (0) 0
3

= − <  

and 1f (1)
3

= . Consequently, the equation has one root or three roots 

within the interval (0,1). The case three roots within this interval are 

impossible because the product of the roots has to be 
8 1
3

> . Thus, 

there is only one root within the interval (0,1). In Figure 2, we present 

Applications
We apply our theoretical results to empirical data. We consider 

both colour vision and Xg blood group data. In Table 2, we present the 
results of the analyses of blood group data, and in Table 3 the results of 
the colour vision data. The results obtained by the mixed sample and 
obtained by combined estimates of male and female samples are fairly 
similar. 

Discussion
The reduction of the biases in the female estimates in the Tables 2 

and 3 is presented in Table 4. The comparison between the maximum 
likelihood estimates and the improved estimates indicates that the MLE 
has a negative bias, but the sample sizes result in ignorable errors. The 
improvements proposed by by Haldane (1956) and Huether & Murphy 
(1980) yield almost identical estimates. 

If our minimax design x 0.5155=  is used for an estimation 
problem, then the minimum efficiency is 0.5155, which is obtained for 
p = 0. If we compare this value with the maximin solution x = 0.6667 
for the estimation problem, we observe how much we have to “pay” 
for the hypothesis testing. On the other hand, if our primary goal is 

estimation and we choose the design 2x
3

= , then the corresponding 

maximal variance is 
p

2 1maxV( p, )
3 N

= , which is obtained for p 0.3333= . 

This can be compared with the earlier obtained min max
x p

0.8991W( p, x)
N

=

. Hence, if our target is parameter estimation, then the efficiency of the 
model test is reduced in the proportion 0.8991 : 1 .

The common opinion of today is that colour blindness is not a one-
locus trait. Waaler´s, Smith´s, and Koliopoulo´s data show statistically 
significant differences from the one-locus model. The common finding 
in this study is that the estimate Mp̂  is less than Fp̂ , and this result 
supports the two-loci hypothesis. However, the other colour vision 
data, especially the female data, are very limited. NZHTA Report 7 
(1998) presents colour vision data collected from different sources 
and the value of this study is this collection. In addition, that study 

N Recessive Dominant  p̂ / SD a) 2χ
M F

ˆ ˆp / p b) SD  p̂ / SD c) Reference

Males 9049 725 8324 0.077226 4.76 0.080119 0.002854 0.076979 Waaler, 1927
Females 9072 40 9032 0.00247 0.066402 0.005238 0.002506
Males 6863 532 6331 0.074505 4.89 0.077517 0.003228 0.074141 Schmidt, 1936
Females 5604 20 5584 0.002862 0.059740 0.006667 0.002905
Males 21231 1687 19544 0.078034 5.62 0.079459 0.001856 0.077898 Koliopoulos et al., 1976
Females 8754 37 8717 0.001740 0.065013 0.005333 0.001753

a)Maximum likelihood estimate on the upper line and SD on the lower line
b)Male estimate on the upper line and female estimate on the lower line
c)Weighted estimate of Mp̂  and Fp̂  on the upper line and SD on the lower line 

Table 3: Colour blindness in different studies.

ML estimate Haldane, 1956 Huether & Murphy, 1980
Xg

Mann et al., 1962 0.33422 0.33598 0.33603
Noades et al.,  1966 0.32769 0.32789 0.32789
Sanger et al., 1971 0.33678 0.33688 0.33688
Colour vision
Whaaler,  1927 0.06640 0.06661 0.06661
Schmidt, 1936 0.05974 0.06011 0.06012
Koliopoulos et al., 1976 0.06501 0.06523 0.06523

Table 4: Comparison between the maximum likelihood estimates and the improved estimates proposed by Haldane (1956) and Huether & Murphy (1980).

x: (1-x) minimizes the 
p

maxW( x, p)? For a given x, we obtain

the function 3 2 8f ( x) x 6x 8x
3

= − + −  in order to locate the roots. An 
iterative calculation yields the numerical root x 0.5155= , and the 
corresponding p value is p 0.3949=

 . Finally, we obtain

min max
x p

0.8991W( p, x)
N

= .                 (28)

The solution x 0.5155=  is our best testing strategy in order to meet 
nature’s worst alternative p 0.3949=

 . This minimax solution of the 
testing problem does not coincide with the maximin solution of the 
efficiency problem. Figure 3 shows how NW( p,x)  depends on p for 
different values of x. The minimax property of x 0.5155=  is easily seen.
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presents tests of the sex differences in the distribution between subjects 
with colour deficiency and normal sight. The tests indicate strong 
sex differences, but the tests have ignored the effect of the sex-linked 
property of colour blindness, and consequently, these results are of 
minor interest.
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x p

0.8990667minmaxW(p,x)=
N

. For details, see the text.
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