Androgen Receptor and Hepatocellular Carcinoma

Tatsuo Kanda*, Osamu Yokosuka and Masao Omata

1Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
2Yamanashi Hospitals (Central and Kita) Organization, 1-1-1 Fujimi, Kofu-shi, Yamanashi (400-8506), Japan
3University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo (113-8655), Japan

Abstract

The androgen receptor (AR) exists in normal liver as well as in human hepatocellular carcinoma (HCC) tissues. Recent studies revealed that AR plays an important role in hepatitis B viral as well as hepatitis C viral hepatocarcinogenesis. The targeting of AR might be developed as a new therapeutic option against HCC. This article provides information regarding the association between AR and HCC.

Keywords: Androgen receptor; Foxa; HBV; HCV; STAT3; VEGF

Abbreviations: HBV: Hepatitis B Virus; HCV: Hepatitis C Virus; HCC: Hepatocellular Carcinoma; AR: Androgen Receptor; DBD: DNA-Binding Domain; ARE: Androgen Response Element; LBD: Ligand-Binding Domain; VEGF: Vascular Endothelial Growth Factor; STAT3: Signal Transducer and Activator of Transcription-3; Foxa: Vertebrate Forkhead Box A

Introduction

Hepatitis B virus (HBV) and hepatitis C virus (HCV) are the most commonly implicated risk factors of hepatocellular carcinoma (HCC) [1-3]. Irrespective of its cause, gender differences also exist in its prevalence [4]. Androgen receptor (AR), belonging to nuclear receptors, is putatively involved in the development of cancers such as prostate cancer, HCC and pancreatic cancer [5-7]. Androgen as a ligand interacts with AR, leading to a suggested link between transcriptional control and physiology. AR is characterized by a central DNA-binding domain (DBD), which targets AR to specific DNA sequences known as androgen response elements (AREs). The C-terminal half of the receptor encompasses the ligand-binding domain (LBD), which possesses the essential property of androgen recognition and ensures both specificity and selectivity of the physical response: LBD can be thought of as a molecular switch that, upon binding with ligand, shifts the receptor to a transcriptionally active state [8-10].

ARE is present in regulatory elements on target genes such as vascular endothelial growth factor (VEGF) and transforming growth factor beta-1, and regulates the growth and proliferation of hepatocytes [11,12]. Sorafenib, a molecular-targeted agent that inhibits tumor cell proliferation and angiogenesis by inhibiting Raf serine-threonine kinase (MAPKK kinase, MAPKK), and VEGF, platelet-derived growth factor beta (PDGF), fms-related tyrosine kinase 3 (FLT3), and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (C-Kit) receptor tyrosine kinase, was approved for treatment of advanced HCC in Europe, USA, Japan and other countries [13,14]. A selective transforming growth factor beta-1 receptor inhibitor inhibits phosphorylation of the beta 1 integrin intracytoplasmic tail, blocking invasion of HCC cells [15].

Nagasue et al. reported that HCC had a significantly higher concentration of androgen receptors than did the surrounding liver tissue [6]. There are several reports concerning the expression of AR mRNA and AR protein in tumor and non-tumor parts of liver, suggesting that AR plays an important role in hepatocarcinogenesis [6,16-35].

Androgen Receptor-Mediating Signaling in HCV-related Hepatocarcinogenesis

HCV core protein, which has a size of ~20 kDa, is one of the structural proteins. It has been reported that HCV core protein is involved in hepatocarcinogenesis [36-42]. Expression of HCV core protein as well as HCV full-length protein leads to activation of the AR signaling pathway in the presence of androgen [43]. Cell culture-grown HCV infection in human hepatocytes also augments AR-mediated signaling in the presence of androgen [43,44]. These results showed that HCV core protein might cross-talk with the AR signaling pathway for promotion of carcinogenesis.

Signal transducer and activator of transcription-3 (STAT3) is often constitutively phosphorylated and activated in human cancers and in transformed cell lines and is implicated in tumorigenesis [45]. HCV core increased STAT3 phosphorylation both at Ser-727 and at Tyr-705, which in turn activates AR [43]. HCV infection also enhances VEGF, one of the target genes of AR [11], and induces in vitro angiogenesis in the presence of androgen [43]. HCV core protein could be an activator of AR in the male-dominant disease HCC.

Androgen Receptor-Mediating Signaling in HBV-related Hepatocarcinogenesis

The male predominance in HBV-related HCC is significantly high, with a ratio of 5-7:1 [4]. HBx is the only HBV nonstructural gene that functions as a multifunctional regulator modulating gene transcription, cell responses to genotoxic stress, protein degradation, apoptosis, and several signaling pathways [46-48]. HBx, which has a size of ~17 kDa, can physically bind to AR [49]. HBx-mediated enhancement of AR activity is androgen-dependent and could be mediated through indirect mechanism involving calcium and c-Src signaling pathways [50]. HBx enhances the AR transcriptional activity through two kinases: c-Src and glycogen synthase kinase-3beta kinase [51]. AR promotes HBV-induced hepatocarcinogenesis through modulation of HBV RNA transcription [52]. The androgen pathway can increase the transcription of HBV.

*Corresponding author: Tatsuo Kanda, Associate Professor, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan, Tel: +81-43-226 2086; Fax: +81-432262088; E-mail: kanda2t@yahoo.co.jp

Received April 22, 2013; Accepted June 06, 2013; Published June 08, 2013


Copyright: © 2013 Kanda T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
through direct binding to the ARE sites in HBV enhancer I, leading to a higher HBV titer in male carriers and increased risk of HCC [53]. These facts together suggest that the targeting of AR might be developed as a new therapeutic strategy against HBV-related HCC [54].

Ma et al. [54] reported that mice lacking hepatic AR developed later and less HCC than their wild-type littermates with comparable serum testosterone in both males and females when using the Cre-Lox conditional knockout mouse model injected with carcinogen and that AR may promote hepatocarcinogenesis via increased cellular oxidative stress and DNA damage, as well as by suppression of p53-mediated DNA damage sensing/repairing system and cell apoptosis. Recently, it has been shown that vertebral forkhead box A (Foxa) factors and their target estrogen receptor (ERα) and/or AR play an important role in the sexual dimorphism of HCC [55]. In conclusion, AR as well as ERα targets estrogen receptor (ERα) and/or AR play an important role in higher HBV titer in male carriers and increased risk of HCC [53]. These facts together suggest that the targeting of AR might be developed as a new therapeutic strategy against HBV-related HCC [54].

Ma et al. [54] reported that mice lacking hepatic AR developed later and less HCC than their wild-type littermates with comparable serum testosterone in both males and females when using the Cre-Lox conditional knockout mouse model injected with carcinogen and that AR may promote hepatocarcinogenesis via increased cellular oxidative stress and DNA damage, as well as by suppression of p53-mediated DNA damage sensing/repairing system and cell apoptosis. Recently, it has been shown that vertebral forkhead box A (Foxa) factors and their target estrogen receptor (ERα) and/or AR play an important role in the sexual dimorphism of HCC [55]. In conclusion, AR as well as ERα targets estrogen receptor (ERα) and/or AR play an important role in higher HBV titer in male carriers and increased risk of HCC [53]. These facts together suggest that the targeting of AR might be developed as a new therapeutic strategy against HBV-related HCC [54].

Ma et al. [54] reported that mice lacking hepatic AR developed later and less HCC than their wild-type littermates with comparable serum testosterone in both males and females when using the Cre-Lox conditional knockout mouse model injected with carcinogen and that AR may promote hepatocarcinogenesis via increased cellular oxidative stress and DNA damage, as well as by suppression of p53-mediated DNA damage sensing/repairing system and cell apoptosis. Recently, it has been shown that vertebral forkhead box A (Foxa) factors and their target estrogen receptor (ERα) and/or AR play an important role in the sexual dimorphism of HCC [55]. In conclusion, AR as well as ERα targets estrogen receptor (ERα) and/or AR play an important role in higher HBV titer in male carriers and increased risk of HCC [53]. These facts together suggest that the targeting of AR might be developed as a new therapeutic strategy against HBV-related HCC [54].

Ma et al. [54] reported that mice lacking hepatic AR developed later and less HCC than their wild-type littermates with comparable serum testosterone in both males and females when using the Cre-Lox conditional knockout mouse model injected with carcinogen and that AR may promote hepatocarcinogenesis via increased cellular oxidative stress and DNA damage, as well as by suppression of p53-mediated DNA damage sensing/repairing system and cell apoptosis. Recently, it has been shown that vertebral forkhead box A (Foxa) factors and their target estrogen receptor (ERα) and/or AR play an important role in the sexual dimorphism of HCC [55]. In conclusion, AR as well as ERα targets estrogen receptor (ERα) and/or AR play an important role in higher HBV titer in male carriers and increased risk of HCC [53]. These facts together suggest that the targeting of AR might be developed as a new therapeutic strategy against HBV-related HCC [54].

References


