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Introduction
In an ideal ion trap the potential is pure quadrupole and the main 

properties of the movement of an ion are obtained by the solution of 
Mathieu equation [1]. In a practical ion trap, however, the electric field 
distribution deviates from linearity which is the characteristic of pure 
quadrupolar trap geometry. This deviation is caused by many different 
agents such as the truncation of electrodes. 

The nonlinearity in ion traps superimpose weak multipole fields 
(e.g., hexapole, octopole, decapole, and higher order fields) and the 
resulting nonlinear field ion traps exhibit some effects which differ 
considerably from those of the linear field traps.

The equation governing the motion of the ion in the nonlinear 
ion trap is the nonlinear Mathieu equation which cannot be solved 
analytically. The superposition of weak higher multipole fields changes 
the motions of ions compared to their motions in a pure quadrupole 
ion trap.

Simulation studies [2] have shown that hexapole superposition 
decreases the secular frequency, positive octopole superposition 
increases the ion secular frequency and the negative octopole 
superposition decreases the secular frequency. Experimentally, it has 
been shown that [3] the octopole and hexapole superposition resulted 
in a decrease in ion secular frequency. 

Sevugarajan and Menon [4-6] have studied the nonlinear Paul ion 
trap. They have applied the Lindstedt-Poincare technique, the modified 
Lindstedt-Poincare technique and the multiple scales perturbation 
technique for solving the nonlinear equation of ion motion in nonlinear 
ion trap. Also, in two previous studies [7,8] done on nonlinear ion traps 
by one of the present authors, the homotopy perturbation method was 
used to study the secular frequencies in nonlinear ion traps. When the 
hexapole superposition is considered, the resulting nonlinear equation 
has a quadratic nonlinearity and we know that the angular frequency for 
positive amplitudes is different from the angular frequency for negative 

amplitudes in nonlinear oscillator with quadratic nonlinearity. In all 
the above studies [4-8] the assumption is that the angular frequency 
for positive amplitudes is equal to the angular frequency for negative 
amplitudes. 

In studying the quadratic nonlinear oscillator and mixed parity 
nonlinear oscillator by the method of harmonic balance, H. Hu 
[9,10] has used the sign function for incorporating the inequality of 
angular frequency for negative amplitudes and positive amplitudes. In 
a recent study [11], this technique was used in the framework of the 
parameter expanding or modified Lindstedt-Poincare method [12-14] 
for calculation of secular axial frequencies in a nonlinear ion trap with 
hexapole, octopole and decapole superpositions. In this paper, we use 
the same technique and the homotopy perturbation method [14-25] 
with a modification [26-28] for studying the asymmetric nonlinear 
oscillators. The modification in He’s homotopy perturbation method 
is introduced by truncating the infinite series corresponding to the 
first order approximate solution before introducing this solution in the 
second order linear differential equation and so on.

The exact solution for nonlinear equation of an anharmonic 
oscillator with quadratic nonlinearity and the exact expression for its 
period have been studied by some authors [29,30]. They have found 
the exact expression for the period of nonlinear oscillator in terms of 
complete elliptic integrals. We have used the results of these papers and 
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Abstract
In this paper we have used a modified homotopy perturbation method used previously by A. Belendez and his 

coworkers, for calculation of axial secular frequencies of a nonlinear ion trap with hexapole, octopole and decapole 
superpositions. We transform the motion of the ion in a rapidly oscillating field to the motion in an effective potential 
and obtain a nonlinear differential equation in the form of a Duffing-like equation. With only octopole superposition 
the resulted nonlinear equations are symmetric; however, in the presence of hexapole and decapole superpositions, 
they are asymmetric. For asymmetric oscillators, it has been pointed out that the angular frequency for positive 
amplitudes is different from the angular frequency for negative amplitudes. Considering this problem, the modified 
homotopy perturbation method is used for solving the resulted nonlinear equations. As a result, the ion axial secular 
frequencies as a function of nonlinear field parameters are obtained. The calculated secular frequencies are 
compared with the results of modified Lindstedt-Poincare approximation and the exact results. There is an excellent 
agreement between the results of this paper and the exact results. 
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have calculated the exact frequencies of an anharmonic oscillator with 
quadratic nonlinearity. The mathematica software has been used for 
calculation of elliptic integrals.

In this paper we take into account the first four multipole terms 
of potential distribution inside the ion trap, i.e. quadrapole, hexapole, 
octopole and decapole terms and ignore the higher multipole fields. 
The resulting nonlinear equation has quadratic and cubic as well as 
quartic nonlinearity. Due to the inequality of angular frequency for 
negative amplitudes and positive amplitudes, we use the sign function 
for constructing the two auxiliary nonlinear equations. Then, the 
modified homotopy perturbation method [26-28] is used for solving 
the two auxiliary nonlinear differential equations and the ion secular 
frequencies are calculated. We compare the results of this paper with 
those obtained by using the modified Lindstedt-Poincare method [11] 
and with the exact results. 

The outline of the paper is as follows: In section 2 the axial 
equation of ion motion in a nonlinear ion trap is derived. In section 
3 the modified homotopy perturbation method is applied to solve the 
equation of ion motion in nonlinear ion trap and the results are also 
given in this equation. Finally, the concluding remarks are given in 
section 4. 

The Axial Equation of Ion Motion in a Nonlinear Ion 
Trap

The axial equation of ion motion in the presence of hexapole and 
octopole superpositions has been derived in [7,8] and in the presence 
of hexapole, octopole, and decapole superposition has been derived in 
[11]. However, in this section, we give a brief derivation of the axial 
equation of ion motion in the latter case.

A solution of Laplace’s equation in spherical polar coordinates for 
a system with axial symmetry can be written in the following general 
form [31]:

0
00

( , , ) (cos )
n

n nn
n

A P
r
ρϕ ρ ϑ φ ϕ ϑ

∞

=

= ∑
                                                       

(1)

where 0 cosU V tϕ = + Ω  is the potential applied to the trap, nA ’s are 
arbitrary dimensionless coefficients, (cos )nP ϑ  denotes a Legendre 
polynomial of order n, and 0r  is a scaling factor (i.e., the internal 
radius of the ring electrode).

When (cos )n
nPρ ϑ  is expressed in cylindrical polar coordinates 

( , )r z  and the three higher order multipoles, i.e. hexapole, octopole and 
decapole corresponding to 3n = , 4 and 5 along with the quadrupole 
component corresponding to 2n =  are taken into account, the time 
dependent potential distribution inside the trap takes the form:2 2 3 2
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where 1 3 2f A A= , 2 4 2f A A=  and 3 5 2f A A= . Here we have 

assumed the operation of the trap along the 0ua =  axis in the Mathieu 
stability plot, that is, the DC component of 0ϕ  is equal to zero. The 
coefficients 2A , 3A , 4A and 5A  refer to the weight of the quadrupole, 
hexapole, octopole and decapole superpositions, respectively.

According to classical mechanics [32], the motion of an ion in a 
rapidly oscillating field such as ( , , )r z tϕ (due to the largeness of Ω ) 
can be averaged and transformed to the motion in an effective potential,

( , ),effU r z  related to ( , , )r z tϕ  through the following relation:

2( , ) ( , , )
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eU r z r z t dt
m

ϕ= ∇∫


                                                   
(3)

Insertion of Eq. (2) for ( , , )r z tϕ  into Equation. (3) and averaging 
with respect to time gives the following relation for ( , ),effU r z
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where 2λ =  for u r= (radial direction) and 8λ =  for u z= (axial 
direction).

By ignoring the term proportional to 2
1f compared with the term 

proportional to 1f (because 1 3 2f A A=  is small in comparison to 1), 
the final form of ( , )effU r z reduces to the following form,
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The classical equation of ion motion in the effective potential
( , )effU r z , and with no excitation potential applied to the end cap 

electrodes is given by:
2
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mdt
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(6)

Where r


 is the position vector of the ion. Combining equations 
(5) and (6), we get the equation of motion in the axial ( )z direction as:
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This is the equation in z direction which is coupled to equation 
in r direction. Since we are interested in axial secular frequencies, we 
put 0r = in equation (7) and get an equation in axial direction which 
depends only on z variable:
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 In Equation (8), by introducing the dimensionless variable x  
through the relation 0x z r= , and omission of index z  from z0ω (for 
simplicity) we get the equation,

2 2 3 4
0 2 3 4 0,x x x x xω α α α+ + + + =                                                  (14)

where 2
2 1 0(9 2) fα ω= , 2

3 2 08 fα ω=  
and 2

4 3 0(25 2) fα ω= .

There are several methods [33,34] that can be used for solution of 
the nonlinear Equation (14). In the next section of this article we have 
used the modified homotopy perturbation method for solving this 
equation.

Application of Modified Homotopy Perturbation 
Method for Solution of the Axial Equation of Motion 
and the Results

The homotopy perturbation method [14-25] is a general method for 
solving the differential and integral equations. This method is explained 
in references 7 and 8 for solving a nonlinear differential equation like 
Equation (14). In this method an embedding parameter [0,1]p∈  is 
introduced. The periodic solution of the nonlinear differential equation 
and the coefficient of linear term ( 2

0ω ) are assumed to be written as 
power series in .p  Then, the power series for the solution and 2

0ω  
are inserted in the nonlinear equation and a set of linear differential 
equations is obtained for the coefficients of the power series for the 
periodic solution. The first few linear equations of the set are solved and 
then are inserted in the power series along with 1p = . In this manner, 
an approximate solution of the main nonlinear differential equation is 
obtained. Here we use this method for solving the equation (14).

The nonlinear differential equation 2 2 3 4
0 2 3 4 0x x x x xω α α α+ + + + =  

2 2 3 4
0 2 3 4 0x x x x xω α α α+ + + + = is the equation of a mixed parity nonlinear oscillator and 

the amplitudes of oscillations for this oscillator are not the same when
0x ≥  and 0x ≤ . We assume that the positive amplitude is A  and the 

negative amplitude is B− ( B is positive). Now we construct the two 
auxiliary equations by using sign function: 
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The sign function is defined as:
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First, we consider the Equation (15) and construct the following 
homotopy:
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In homotopy perturbation method the solution x  and the constant 

2
0ω are expanded in powers of embedding parameter p  as:

2
0 1 2x x px p x= + + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                                                              (19)
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In equation (15), the amplitude is A , so we have used the index A
in the expansion of 2

0ω . As a result, in the expansion of 2
0ω for solution 

of equation (16) we use the index .B

Substitution of the power series (19) and (20) into Equation (18), 
and collecting terms of the same power of ,p  gives the following set of 
linear equations:
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In Equation (21)-(23) we have taken into account the following 
expression [35,36],
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The first equation of the set can be solved easily, giving the solution 
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where,
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Substituting 0( )x t , as well as the above series expansions for
2
0 0sgn( )x x  and 4

0 0sgn( )x x  into Eq. (22), having no secular term 
in solution 1( )x t requires eliminating contributions proportional to 
cos Atω  in Eq. (22) and we obtain:
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Insertion of 1Aω  into Eq. (20), neglecting the terms proportional 
to 2p and higher degrees, and combining with 1p = at last step, the 
approximate amplitude dependent frequency, (1)

Aω , in first order is 
obtained as:
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Finally, insertion of 2
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 in this equation gives the result,
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In a similar way, for oscillation of ion in negative direction, from Eq. 
(16) we get the following result for Bω , in first order of perturbation,
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In first order of the perturbation, the results for Aω  and Bω are the 
same as the results of modified Lindstedt-Poincare method [11].

Now, we go to second order approximation. In order to go to 
second order approximation we need to obtain the correction term 

1( )x t for the periodic solution 0( )x t . In order to obtain 1( )x t , we insert 
the expression for 1Aω from Eq. (29) into Eq. (22) and rewrite it in the 
following form, 
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where, 3
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b =  and 2 1 0nb + =  for 2.n ≥

Now, the periodic solution to Equation (33) can be written in the 
following form,
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Insertion of Equation (34) into Equation (33) gives the following 
expression for the coefficients 2 1nd +
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Taking into account the initial condition 1(0) 0x = , we obtain from 
Equation (34):
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To determine the second order approximate solution we need 
to substitute Equation (34) into Equation (23). The new differential 
equation for 2( )x t is difficult to solve because of an infinite number of 
harmonic terms in 1( )x t . At this stage we consider the modification in 
He’s homotopy perturbation method [26-28] to simplify the solution 
procedure. In this modified version of homotopy method the infinite 
series expansion for 1( )x t  in Equation (34) is truncated and an 

approximate equation ( )
1 ( )Nx t is written as:
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In the approximate expression for ( )
1 ( )Nx t  we assume 2N = and 

obtain the approximate solution for 1x as:
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3d and 5d are calculated by using the relation (35).
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requires eliminating contributions proportional to cos Atω  in the 
resulted differential equation for 2( ),x t  which implies:
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Insertion of calculated expressions for 1Aω  and 2Aω into Eq. (20) 

along with 1p =  and using the values of 2
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period, in positive direction:

(2)

2 (2)
0 0

1 23 ,
3 210

A A
A A A

A
L S T

ωω π
ω ω π ω

= = + =

                        
   (41)

Where, 

3 2
1 3 2315(36 80 3 18 ))AL Af A f A fπ π= + + +                               (42)

and
2 2 2

1 1 3
4 2 2

3 1 2
2 2 2 2 2

2 3 2 2

16 (2531817 10405800

9290000 ) 37800 (27 (7 38 ) 140

(3 14 ) ) 297675(1 6 (2 5 ))

AS A f A f f

A f A f f A

A f A f f A f Aπ π

= + +

+ + +

+ + + +         

(43)

In a similar way, for oscillation of ion in negative direction we get 
from Equation (16):
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In the relations (42) and (43) A  is the positive amplitude and is 
equal to maximum value for x  and maxx can be obtained by using the 
relation 0 0 1 2z r =  for ion trap and inserting 0z  for z in equation

0x z r= gives 1 2A = . As mentioned earlier, the amplitude in 
negative direction, B , is different from A  and can be calculated in 
terms of A . For calculation of B , the both side of Equation (14) is 
multiplied by x and then integrated [10], giving the result,

2 2 2 3 4 5
0 2 3 4

1 1 1 1 1
2 2 3 4 5

x x x x x Cω α α α+ + + + =

                              
(47)

Where C  is the constant of integration. Insertion of initial 
conditions in Equation (47) gives the result,

2 2 3 4 5 2 2
0 2 3 4 0 2

3 4 5
3 4

1 1 1 1 1 1
2 3 4 5 2 3

1 1
4 5

A A A A B

B B B

ω α α α ω α

α α

+ + + = −

+ −
                 

(48)

Using mathematica software, this equation can be solved 
analytically and B is calculated in terms of A . 

It is clear that the second order approximate period is:

2 2
2 2

A BT TT +
=

                                                                                    
(49) 

So, the second order approximate secular frequency is:
1

2

0 2

2 2 1 1
3 210 3 3A A B B

T L S L S

ω π
ω π

−
 
 = = +  + +      

(50)

The perturbed secular frequencies can be calculated through the 
relation (50) as a function of field aberrations (parameters 1f , 2f and

3f ). 

The values of 0ω ω  for different values of 1f , 2f and 3f  are given 
in tables (1), (2), (3) and (4) and for comparison purposes the values 
of 0ω ω  in modified Lindstedt-Poincare approximation [11] are also 
given in the tables.

For a nonlinear oscillator with only a quadratic term as a 
nonlinearity 2( 0α ≠ and 3 4 0)α α= = , the exact values of frequencies 
are available in the literature [29,30] and are given in terms of complete 
elliptic integrals (relation No. (46) of [30]). Mathematica software 
has been used for calculation of numerical values of elliptic integrals 
and finding the roots of cubic polynomial equations. For a nonlinear 
oscillator with mixed parity 2( 0α ≠ , 3 40, 0)α α≠ ≠ , the exact values 
of frequencies can be calculated [37] by the integral,

1
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∫ 1
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 − − − + − − − 

∫

∫
(51)

This integral is evaluated numerically by mathematica for 
0exactω ω , the exact values of frequencies. 

In table 1, it has been assumed that only the hexapole superposition 
exist and the other multipoles are absent. So, the exact values of 
secular frequencies 0( )exactω ω  for different values of 1f ( 2 3 0f f= =

2 3 0f f= = ) are compared with the results of this paper for second order 

Table 1:  Comparison of the calculated values of 2 0ω ω  in this paper for only hexapole superposition with the values obtained by modified Lindstedt-Poincare 
approximation [11] and the exact values.

1f B 2 0MHPω ω 2 0MLPω ω 0exactω ω

0.01
0.05
0.10
0.11
0.12
0.13
0.14
0.15
0.155
0.1565

0.722439
0.792221
0.913755
0.947125
0.986189
1.03385
1.09633
1.19283
1.28435
1.3404

0.999569
0.987927
0.939194
0.921209
0.898183
0.867497

0.8232207
0.744627
0.649963
0.556534

0.999568
0.987913
0.939082
0.921043
0.897928
0.867083
0.822454
0.742729
0.644365
0.527906

0.999569
0.987926
0.939193
0.921214
0.898204
0.867561
0.823418
0.745686
0.655595
0.582921

Table 2: Comparison of the calculated values of 2 0ω ω  in this paper for only  octopole  superposition with the values obtained by modified Lindstedt-Poincare 
approximation [11] and  the exact values.

f2 2 0MHPω ω 2 0MLPω ω 0exactω ω

0.01
0.05
0.10
0.15
0.20
0.25
0.30
0.40
0.50
-0.01
-0.05
-0.10
-0.15
-0.20

1.01487
1.072

1.13891
1.20173
1.2612
1.31776
1.37188
1.4739
1.56905
0.984866
0.921355
0.833427
0.730894
0.598426

1.01487
1.072

1.1389
1.20173
1.2612

1.31776
1.37188
1.4739

1.56905
0.984866
0.921355
0.833427
0.730894
0.598426

1.01487
1.072

1.1389
1.2017
1.2612
1.3177
1.372

1.4739
1.569

0.98487
0.92136
0.83343
0.73099
0.59968
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approximation 2 0( )MHPω ω  and the results of modified Lindstedt-
Poincare approximation 2 0( )MLPω ω obtained in [11]. 

In table 2, we have considered only the octopole superposition. 
In this table, the exact values of secular frequencies 0( )exactω ω  for 
different values of 2f ( 1 3 0f f= = ) are compared with the results 
of this paper for second order approximation 2 0( )MHPω ω  and the 
results of modified Lindstedt-Poincare approximation 2 0( )MLPω ω
obtained in [11]. 

In table 3, the hexapole and octopole superpositions are considered 
and the exact values of secular frequencies 0( )exactω ω  for different 
values of 1f  and 2f  ( 3 0f = ) are compared with the results of this 
paper for second order approximation 2 0( )MHPω ω  and the results of 
modified Lindstedt-Poincare approximation 2 0( )MLPω ω obtained in 
[11]. 

Finally, in table 4, the hexapole, octopole, and decapole 
superpositions are considered and the exact values of secular frequencies 

0( )exactω ω  for different values of 1f , 2f  and 3f  are compared with 
the results of this paper for second order approximation 2 0( )MHPω ω  
and the results of modified Lindstedt-Poincare approximation 

2 0( )MLPω ω  obtained in [11].

As is seen in the table 1-4, the results of this paper are in 
excellent agreement with the exact results and are closer to the exact 
results compared with the results of modified Lindstedt-Poincare 
approximation obtained in [11]. 

Conclusion
In this paper we have derived the equation of ion motion in axial 

direction of a nonlinear ion trap. The nonlinear ion trap is generated 
by superposition of weak multipole fields on the pure quadrupole field. 
Hexapole, octopole, and decapole field superpositions are considered. 

The computed axial equation of ion motion is a nonlinear equation with 
quadratic, cubic and quartic nonlinearity. We have used the modified 
homotopy perturbation method for solution of the resulted equation 
and calculation of the axial secular frequencies of the ions in the trap. 
The results of this paper are compared with the exact results and the 
results of the modified Lindstedt-Poincare approximation obtained in 
[11]. There is an excellent agreement between the results of this paper 
and the exact results. 
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