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Introduction 
Longitudinal research is described as investigation of longitudinal 

data, where the term “longitudinal” is used in the context of representing 
a change of response over a long period of time at the individual level. 
The longitudinal data under examination in this study is routinely 
collected medical general practice (GP) data, where each individual 
has repeated measurements of the response variable over time. This 
retrospective longitudinal data set is used here to analyse individuals 
who had experienced the same event (e.g. diagnosis of a particular 
disease) within the same time interval [1].

 This type of data frequently poses some statistical challenges 
when modelling the response, in order to account for the variance and 
covariance of the repeated measurements from the same individual. 
These include the repeated measurements being taken at unequal time 
intervals, the data structure being unbalanced (i.e. unequal numbers of 
observations per individual) and response variables, which are often 
not normally distributed. 

 The study of change is vital in many disciplines [2], where the main 
objective is to model the change in the response for an individual over 
time, and the factors affecting that change [3]. When the response is a 
continuous variable, traditional techniques used to analyse the change 

are repeated Analysis of Variance (ANOVA), Multivariate Analysis of 
Variance (MANOVA) and linear mixed models (LMM). All of these 
traditional models assume that the response variable is normally 
distributed. 

In this study, we use a longitudinal sample of GP records from 
the UK to investigate the impact of various common diseases on the 
progression of Chronic Kidney Disease (CKD). Chronic Kidney 
Disease is defined as the “gradual and usually permanent loss of kidney 
function over time” [4]. It is a multi-stage disease, with stage 1 being 
the mildest, through to stage 5, renal failure (also known as end stage 
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Abstract
The field of longitudinal analysis is a rapidly developing and increasingly important area of statistical modelling. This 

is in response to the increasing availability of longitudinal data across many fields and recognition of the rich resources 
such data might provide. However, a lag between the development of statistical methodologies and their applications 
to substantive problems has been identified, but current advances in novel longitudinal methods aim to redress this 
imbalance. Longitudinal data often presents repeated response measures, but these data are often unbalanced in 
relation to number of and intervals between measures. Although Linear Mixed Models provide a framework which 
can accommodate such unsystematic response patterns, such models become unreliable when responses do not 
approximately follow a normal distribution. Extensions of Linear Mixed Models to Generalized Mixed Models allow the 
analysis of such non-normal outcomes via appropriate transformations of the response. These models, which are based 
on a repeated measures structure within a two-level multilevel framework, allow both random and systematic effects to 
be studied simultaneously. Although these are well-established, they are only recently being applied in the medical and 
social sciences. 

Here, applications of these models are illustrated by analysing the progression of Chronic Kidney Disease (CKD) 
over time, and in relation to the impact of known co-morbidities. The data are taken from routinely collected patient 
records from a representative sample of UK General Practices (GPs). The aim is to use the longitudinal aspects of the 
data to further understanding of the early indications and the nature of the progression of CKD. The methodologies 
should be applicable to other chronic illnesses, which are primarily managed at the GP level. 

The results of our models concur with previous research, in regard to the associations between individual co-
morbidities and CKD. Furthermore, our models evaluate the impact of combinations of these co-morbidities on the 
rate of progression of CKD, as measured by repeated estimated glomerular filtration rate (eGFR) readings. Our results 
provide evidence that this methodological approach is a useful and appropriate mechanism for investigating dynamic 
relationships within health-related data, and that such routinely collected data can be useful in epidemiological research.

        Journal of Biometrics & Biostatistics   Jo
ur

na
l o

f B
iometrics & Biostatistics

ISSN: 2155-6180



Citation: Yarkiner Z, Hunter G, O’Neil R, de Lusignan S (2013) Applications of Mixed Models for Investigating Progression of Chronic Disease in a 
Longitudinal Dataset of Patient Records from General Practice. J Biomet Biostat S9: 001. doi:10.4172/2155-6180.S9-001

Page 2 of 8

J Biomet Biostat                               ISSN:2155-6180 JBMBS, an open access journalLongitudinal Data Analysis

renal disease, ESRD). Kidney function is normally measured using 
Glomerular Filtration Rate (GFR), which is a measure of the kidney’s 
efficiency. Since the disease lacks symptoms in the early stages, patients 
are commonly not diagnosed, until they have reached at least stage 3, 
when their GFR falls below 60 mL/min/1.73 m2 for at least 3 months, 
with or without kidney damage. From study of the relevant literature, 
the main co-morbidities that are established as being related to CKD, 
and hence used in this study, are diabetes, anaemia and cardiovascular 
diseases (including hypertension, ischaemic heart disease and 
peripheral vascular disease).

The responses being investigated in this study are repeated 
estimated GFR (eGFR) values, computed using the Modification of 
Diet in Renal Disease (MDRD) formula [5,6]. Since a portion of the 
original dataset is removed in order to analyse only the patients who 
are diagnosed to have CKD between stages 3 to 5 (i.e. those with eGFR 
values less than 60), the distribution of the sample data presented here 
is negatively-skewed, so the distribution of the response is not assumed 
to be normally distributed. 

The main aim of this paper is to evaluate how eGFR changes over 
time, and particularly how previously established associated factors and 
co-morbidities affect the progression of the disease. A list of acronyms 
and abbreviations used is given in Table 1.

Materials 
Data

The data are taken from routinely-collected patient records 
from a sample of 129 general practices in England and Wales, these 
practices provide population based primary health care. Initially, 
the data contained individual records for approximately 1.1 million 
patients collected over an 11 years period (2000-2010). The data 
include information about diagnosed diseases, prescribed medications 
and therapies, results of relevant laboratory tests, as well as other 
more general health measurements, for example blood tests, blood 
pressure values and body mass index values. Basic demographic data, 
e.g. age, gender, ethnicity, etc., and information about some lifestyle 

factors is also available at the patient level, although collection of this 
information is not compulsory, and so is not consistently recorded. 
As several different computerized data recording systems are in use 
across general practices in the UK, the data for our study was extracted 
using a Department of Health approved data extract tool, Morbidity 
Information and Export Syntax (MIQUEST) [7]. Using MIQUEST, 
records from different practices and systems were extracted then 
combined into a single database, from which a “flat” file was created for 
this analysis. Further manipulation of the data to get it into a useable 
format and subsequent analyses are carried out using SPSS version 
21. The study was approved by the ethics committees of Kingston 
University and St. George’s, University of London, and part of a wider 
ethically approved project [8,9].

Data validation and measures

In order to validate the GP dataset, we compared its basic 
demographic composition (in terms of age and gender) to that of the 
UK Census of 2011. We found that the two populations are similar 
in these respects and hence deduced that the GP data provide a good 
representation of the population of England and Wales. However, 
because CKD is primarily a disease of adulthood and the MDRD 
equation is only considered to be valid for people aged between 18 and 
75 [5], records of patients outside that age range at baseline (i.e. t=0) are 
removed from this study. Furthermore, it has also been suggested that 
the (MDRD) equation is not valid for obese people [4], and so patients 
who had BMI greater than 30, and hence were obese, at the time of 
their baseline measurement were excluded from the sample. Further 
data cleaning techniques were employed to maximise the quality and 
integrity of the dataset before analysis, e.g. removal of incomplete and 
incorrect patient records. 

The response (dependent) variable in the following analyses is 
eGFR. This biomarker measure is calculated using the modification of 
diet in renal disease (MDRD) formula [10]. The data had been adjusted 
for differences in laboratory assay, prior to standardisation in 2006 
[11]. The baseline measure for each patient is defined as the first eGFR 
measurement which resulted in a diagnosis of CKD between stages 3 
and 5. This was set as time t=0, i.e. the baseline time, for each patient. 

The data provide repeated measures of the eGFR for individual 
patients, with between 1 and 15 eGFR readings per patient. As change 
in eGFR over time is one of the main themes of this study, it was felt 
that a clearer pattern of the decline in eGFR, and hence the progression 
of CKD, over time would be best investigated by considering only 
those patients who had at least 8 repeated eGFR measurements, and 
where successive measurements were at least 3 months apart. This 
requirement on the time gap between measurements was imposed, in 
order to avoid small errors or uncertainties in eGFR values taken in 
quick succession leading to large errors in the corresponding rates of 
change. This action results in all patients included in this study having 
observations recorded over at least four years. 

Diagnoses of specific previously proposed co-morbidities of CKD, 
namely diabetes, anaemia and cardiovascular diseases-including 
peripheral vascular disease (PVD), ischaemic heart disease (IHD) 
and hypertension- at or before t=0 (baseline time) are also noted, i.e. 
a binary coded indicator is included denoting whether or not the co-
morbidity is present in that patient at their time of first CKD diagnosis. 
These disease indicators were binary coded using the SPSS convention, 
such that disease absent was coded as 1 and disease present was coded 
as 0. Additionally, we recorded whether patients had diabetes or were 
anaemic; the latter is a common and important complication of CKD 

Abbreviation Meaning Reference
AIC Akaiki Information Criterion  [25,27]
ANOVA Analysis of Variance  [28]
BIC Bayesian Information Criterion  [25,27]
CKD Chronic Kidney Disease  [29]
CVD Cardiovascular Disease  [30]
eGFR Estimated Glomerular Filtration Rate  [31]
ESRD End Stage Renal Disease  [10]
GFR Glomerular Filtration Rate  [31]
GLM General Linear Model  [32]
GLMM Generalized Linear Mixed Model  [17,33]
GP General Practice  [34]
IHD Ischaemic Heart Disease  [18]
LMM Linear Mixed Model  [20,35]
MANOVA Multivariate Analysis of Variance  [28,36]
MDRD Modification of Diet in Renal Disease  [5,6]
MIQUEST Morbidity Information and Export 

Syntax
 [7]

NHS National Health Service of the UK  [7]
PVD Peripheral Vascular Disease  [37]
SEC Science, Engineering and Computing
-2LL -2 LogLikelihood  [38]

Table 1: List of abbreviations.
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[12]. Our definition of a patient having cardiovascular disease was that 
he/she had been diagnosed to have either family history of CVD, having 
hypertension, PVD or IHD by the time of their diagnosis with CKD. 
Age is calculated as the difference in years between the patient’s year of 
birth and the year of the baseline (t=0) eGFR measurement. 

Methods
Linear Mixed Models (LMMs)

These are the basic type of models used to analyse Gaussian 
(normal) longitudinal data, where the response is modelled as a linear 
function, and is assumed to be normally distributed with constant 
variance. The model is composed of two levels, where two main types 
of effects are investigated, namely fixed effects and random effects [13]. 
Level one represents the repeated eGFR values and level two represents 
the subjects. Fixed effects account for between-subject variation, 
are taken into account at level two and model the mean structure. In 
contrast, the random effects take account of within-subject variation, 
are considered at level one and model the different types of variations, 
such as serial correlation, measurement error and random effects [14]. 
Serial correlation is the variation due to the association between the 
variable and itself over various time lags. Measurement error is the 
variation due to an inaccuracy occurring during the measurement of 
the response variable. A random effect is the variation due to random 
factors that cannot be measured or controlled. 

A LMM is of the form; 

β ε= + +i i i i iY X Z b    ( )~  0,ψi qb N   ( )2~  0,ε σ Λnii iN                 (1)

where

Yi is the response vector, which is the sequence of repeated eGFR 
measurements in ni×1 dimensions, where ni is the total number of 
observations, for individual i. 

Xi is the model matrix for the fixed effects, which is in ni×p 
dimensions, where p is the total number of fixed effects,

β is the vector for fixed-effects coefficients in p×1 dimensions, 

Zi is the model matrix for the random effects, which has ni×q 
dimensions, where q is the total number of random effects,

bi is the vector for random-effects coefficients in q×1 dimensions, 

εi is the vector of errors in ni×1 dimension,

ψ is the covariance matrix for random errors in q×q dimensions 
and

2σ Λi   is the covariance matrix for errors in ni×ni dimensions [15].

 Initially, the response is assumed to be normally distributed and 
the best LMM model containing the most significant co-morbidities is 
found. However, the histogram of the response variable shown in Figure 
1 illustrates that the eGFR values are not normally distributed for our 
data, and tests for normality (Table 2) confirmed this. It can be seen that 
the distribution is slightly negatively skewed. Therefore, the normality 
assumption is no longer valid for the analysis, and so alternative models 
for non-normal data are considered.

Generalized Linear Mixed Models (GLMM)

Since the distribution of our data is skewed, the normality 
assumption that is assumed in the LMM is violated. Hence, a function 
of the mean response is modelled instead of the mean response itself. 

GLMMs are an extension of general linear models (GLM), which 
take random and fixed effects into account, and are used when the 
assumption of independence between observations is violated (e.g. in 
longitudinal studies where repeated measurements are taken from the 
same individual) [16,17]. GLMM models are the extension of LMMs to 
account for the response following various non-normal, but standard 
distributions such as the gamma distribution, inverse Gaussian 
distribution or binomial distribution. GLMMs allow the linear predictor 
to have, in addition to fixed effects, one or more random components 
with assumed normal distribution of mean zero and constant variance. 
In this way, the correlation between observations from the same 
individual is taken into account in these models [15].

Figure 1: Distribution of eGFR values across all measurements for all patients 
within our dataset who have been diagnosed with CKD between stages 3 to 5. 
The solid line is the best-fitting normal distribution.

Kolmogorov-Smirnov Shapiro-Wilk
Statistics df Sig. Statistics df Sig.

(a)
eGFR Data (Figure 1)
eGFR Value 0.054 3776 <0.001 0.985 3776 <0.001
(b)
ln(eGFR) Data (Figure 2)
ln(eGFR) 
Value

0.101 3776 <0.001 0.917 3776 <0.001

In this sample of the data set, since the total number of observations number 
is greater than 2000, the Kolmogorov-Smirnov test is used to test the normality 
assumption of the dependent variable. From the Table 1 above, it can be concluded 
that the statistics resulted from Kolmogorov-Smirnov test is significant, meaning 
that H0 from the hypothesis is rejected and the sample data is assumed to be 
statistically different from a normal population. The results  of the Shapiro-Wilk 
test also agreed with this. Therefore GLMM models are performed instead of LMM 
models in order to model the dependent variable which does not follow a normal 
distribution. However, the dependent variable should follow one of the known 
distributions from the exponential family. 

Even if the dependent variable (which is eGFR) is transformed to the log domain, 
the distribution is still not normally distributed as can be seen from Figure 2 and 
Table 1b. Therefore, eGFR itself is used in the model formulation assuming a 
gamma distribution. This assumption is made in formulation of GLMM models 3-5.

Table 2: Normality test results. 
(a) for eGFR data (Figure 1) and 
(b) for ln(eGFR) data (Figure 2).
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The general form of the GLMM is the same as in equation (1). 
However, in a GLMM, instead of modelling the response itself, a link 
function is used to transform the response into a linear predictor. The 
covariance structure is also estimated using the link function. The link 
function is represented by a generic link that is denoted by g (.) and the 
linear predictor is formed from the combination of fixed and random 
effects, excluding the residuals. 

A linear predictor has the form;

                                  η = Xβ+Zγ			                    (2)

Where

X is the matrix of regressors (e.g. independent variables) with 
corresponding βs, which are the fixed effect parameter coefficient 
estimates for these regressors,

Z is the matrix of variables having random effects with 
corresponding random effects denoted by γ [19].

 An inverse link function, denoted by h (.)=g-1(.), is used to convert 
the transformed response back to the original units. In non-Gaussian 
data, the assumption of correlation between individual measurements 
is different from that for Gaussian data, and hence results in different 
interpretations of the regression coefficients in the model [15].

In GLMMs, the effect of a covariate on the mean response for that 
individual is estimated conditionally based on the random effect for 
that individual [20]. The type of the link function and corresponding 
family of the distribution is chosen based on whether the outcome is 
binary, discrete or continuous [21,22]. In this study, since the response 
(i.e. eGFR values) are on a continuous scale, only one particular type 
of link function, namely the logistic link function with a gamma 
distribution, is used. 

The logistic link function [23] is expressed as;

( ) ln
1

 
=  − 

pg p
p

  				                    (3)

The inverse link function [24] is then expressed as;

( )
1

=
+

s

s
eh s

e
  				                      (4) 

The probability distribution function for the general gamma 
distribution [19] is expressed as;

               (5)

Where “a” is the shape parameter and “b” is the scale parameter 
of the gamma distribution, and Γ(α) is the gamma function, satisfying 
equation 6 :

E(X)=ba

Var(X)=b2a 					                  (6)

The generalized gamma distribution used in this paper represents 
a general family of distributions, where the exponential distribution 
and chi-square distribution are special cases with a=1 and with b=2, 
respectively. The generalized gamma distribution is used to model the 
product of exponentially distributed random variables. In both linear 
mixed models and generalized linear mixed models, the coefficients 
were computed using the restricted maximum likelihood estimation 
method in the SPSS package. 

Results and Discussion
The main purpose of this study is to determine if there is any 

association between the co-morbidities of interest (i.e. diagnoses of 
anaemia, diabetes and cardiovascular diseases), and the response (i.e. 
eGFR values) and its change over time. In this study, the random effect 
is a correction appropriate for a particular individual patient. Initially, a 
histogram is drawn in order to look at the distribution of eGFR values 
across all the measurements for all patients in our sample. In order 
to make a goodness of fit comparison, a normal curve of appropriate 
mean and variance is then drawn on top of the same graph (Figure 1). 
It can be concluded from this that the distribution of this data, for CKD 
patients only, is negatively skewed.

In total, five models are created and analysed for our data set. 
Parameter estimates and corresponding standard errors and p-values 
for each of the five models can be found in Tables 3-7, a table for each 
model. In these models, only the statistically significant co-morbidities 
were retained and the rest were removed from the models and the 
optimal coefficient values are recalculated. The main reason for performing 

Model 1 Model Term Coefficient Standard Error p-value
Time (years) -0.213 0.085 0.013**
Diagnosis of CVD 2.066 0.777 <0.001***
Diagnosis of Diabetes 3.016 0.724 0.008**
Diagnosis of 
Anaemia*Time 

-0.567 -0.567 <0.001***

*p<0.05, **p<0.01, ***p<0.001 
Table 3: Results of Model 1.

Model 2 Model Term Coefficient Standard Error p-value
Intercept 3.877 0.016 <0.001***
Time (years) -0.007 0.002 <0.001***
Diagnosis of CVD 0.043 0.016 0.007**
Diagnosis of Diabetes 0.060 0.015 <0.001***
Diagnosis of 
Anaemia*Time 

-0.013 0.004 0.003**

Diagnosis of CVD*Time -0.006 0.003 0.021*

*p<0.05, **p<0.01, ***p<0.001 
Table 4: Results of Model 2.

Model 3 Model Term Coefficient Standard Error p-value
Intercept 3.869 0.017 <0.001***
Time (years) -0.006 0.002 0.003**
Diagnosis of CVD 0.050 0.050 0.004**
Diagnosis of Diabetes 0.064 0.064 <0.001***
Diagnosis of 
Anaemia*Time 

-0.015 0.005 0.004**

Diagnosis of CVD*Time -0.007 0.003 0.014*

*p<0.05, **p<0.01, ***p<0.001 
Table 5: Results of Model 3.

Model 4 Model Term Coefficient Standard Error p-value
Intercept 4.060 0.012 <0.001***
Time (years) 0.003 0.001 0.05*
Diagnosis of CVD -0.033 0.013 0.014*
Diagnosis of Diabetes -0.052 0.012 <0.001***
Diagnosis of 
Anaemia*Time 

0.009 0.003 0.001***

Diagnosis of CVD*Time 0.005 0.002 0.002**

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 
Table 6: Results of Model 4.

11( , , )
( )

−−=
Γ

x
a b

af x a b x e
b a

  a > 0, b > 0, 0 < x < ∞  
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five models in total is to find the “best” model with fewest parameters, best 
fit to the data and with the least complex covariance structure. As each of 
these models are computed, the “goodness of fit” of each one to our data is 
found using the Akaiki Information Criterion (AIC), -2 LogLikelihood 
(-2LL) and Bayesian Information Criterion (BIC), in order to compare 
the models and ensure that a better model is obtained at each step (Table 
8). Each of these criteria is such that the lower the value of the statistic, 
the better the model fits the data [25]. In order to keep consistency 
between models and to make fair comparisons between them, the same 
co-morbidities are initially included in all of the models studied. In 
all five models, the same sample of data is used as for the LMM (i.e. 
equation (1)), using 472 patients with at least 8 repeated observations 
for each patient, resulting in 3776 observations of eGFR values in total. 

Initially, model 1 is produced assuming a normal distribution 
with identity link function. This model is essentially that described 
in equation (1), using the LMM approach. In this model, the co-
morbidities found to be significant, and hence taken into account are 
diagnoses of diabetes and cardiovascular diseases at baseline and time, 
and its interaction with the diagnoses of anaemia and of cardiovascular 
disease. The coefficient values, their standard errors and significance 
levels are given in Table 3. 

The coefficients which best fit our CKD data are evaluated and 
result in the equation for model 1 which is

Where y represents the eGFR value and each diagnosis is 1, if the 
disease is present or 0 otherwise.

In order to investigate whether a multiplicative rather than additive 
model would be more appropriate for this data, the eGFR values are 
transformed to the natural logarithmic domain, and, by again assuming 
normality of the response variable, model 2 is computed using a normal 
distribution with log link function. The coefficients found, together 
with their standard errors and significance levels, are given in Table 4. 

The equation for model 2, with optimal coefficient values is found to be

 	

Since model 2 is in the log domain, very different coefficients 

are observed from before. When the AIC, BIC and -2LL information 
criteria for models 1 and 2 are compared, it can be observed that 
transforming the eGFR values using the natural logarithm improved 
the model fit by a large amount, even though normality assumption was 
still retained (Table 8). 

We had evidence (Figures 2 and 3) that both our eGFR and ln 

Model 5 Model Term Coefficient Standard Error p-value
Intercept 4.060 0.012 <0.001***
Time (years) 0.003 0.001 0.05**
Diagnosis of CVD -0.033 0.013 0.013*
Diagnosis of Diabetes -0.050 0.012 <0.001***
Diagnosis of 
Anaemia*Time 

0.003 0.002 0.003**

Diagnosis of CVD*Time 0.002 0.003 0.005**

*p ≤ 0.05, **p<0.01, ***p<0.001 
Table 7: Results of Model 5.

Model Type AIC BIC -2LL
1 LMM 24553.059 24621.572 24530.989
2 GLMM -4489.937 -4421.424 -4512.007
3 GLMM -4450.508 -4381.995 -4472.578
4 GLMM -5724.751 -5656.239 -5746.822
5 GLMM -5733.991 -5671.701 -5754.049

Table 8: Model comparison.

Figure 2: Distribution of ln(eGFR) values across all measurements for all 
patients within our dataset who have been diagnosed with CKD between 
stages 3 to 5. The solid line is the best-fitting normal distribution. 
If the dependent variable (i.e. eGFR) is subtracted from a constant value (i.e. 
the highest eGFR value found in our dataset), then it can be assumed that 
this transformed dependent variable (107-eGFR) will follow a standard gamma 
distribution. As can be seen from figure 3, even the distribution is still not normal, 
distribution in figure 3 is closer to normal compared to figure 2 and, hence, the 
assumption of gamma distribution when using the transformed eGFR value rather 
than the eGFR value itself is better, which is used in GLMM model 5.

Figure 3: Distribution of ln(Transformed eGFR), i.e. ln(107-eGFR), values across 
all measurements for all patients within our dataset who have been diagnosed with 
CKD between stages 3 to 5. The solid line is the best-fitting normal distribution.

48.592 0.213( ) 3.016( ) 2.066( )
0.567( ) 0.328( )
= − + +

− ∗ − ∗
y time Diabetes diagnosis CVD diagnosis

Anaemia diagnosis time CVD diagnosis time

    

                                      (7)

ln( ) 3.869 0.006" " 0.064( ) 0.050( )
0.015( ) 0.007( )

= − + +
− ∗ − ∗

eGFR time Diabetes diagnosis CVD diagnosis
Anaemia diagnosis time CVD diagnosis time                                                                      (8)
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(eGFR) data were skewed and not exactly normally distributed. We, 
therefore, carried out normality tests (Table 2), which showed the data to 
be non-normal. Thus, in model 3, the normality assumption is removed 
and, since the distribution of eGFR values is found to be skewed, the 
eGFR values are therefore modelled using a gamma distribution with 
log link function. In this way, the natural logarithm of the mean eGFR 
values is modelled, the coefficients were re-calculated and the model 
coefficients, their standard errors and significance values are given in 
Table 5. The equation with best coefficient values for this model (model 
3) is found to be

 	

A gamma distribution is usually employed when the data is 
positively skewed. However, in this study, the data is negatively skewed 
(Figure 1). Therefore, when the differences in the information criteria 
between model 3 and model 2 are compared against the corresponding 
difference between model 2 and model 1, only small improvements 
are observed in the former case. In order to get a further improved 
model, the eGFR values are first manipulated to reverse the shape of 
the distribution from negatively-skewed to positively-skewed. This 
transformation of eGFR values is carried out by subtracting each 
eGFR value from the whole number, just greater than maximum eGFR 
value found amongst our CKD patients (i.e. 107). This ensures any 
potential problems due to having to find the logarithm of a negative-
valued quantity are removed. In this way, the distribution is changed 
to positively-skewed, and hence will be more appropriate for being 
modelled using a gamma distribution in the analysis. Therefore, model 
4 is formed with the manipulated eGFR values as response variable, 
using a gamma distribution with log link function. The equation with 
optimal coefficients for this model is found to be;

When the information criteria for model 4 and model 3 are 
compared, a major improvement is observed in the all three measured 
goodness of fit criteria, indicating that model 4 is a much better model 
for this data.

The association between the initial eGFR status and the progression 
of eGFR over time is estimated by calculating the covariance matrix. The 
“unknown structure” of the covariance matrix is estimated by the SPSS 
package. In each of the models above (models 1 to 4), the covariance 
matrix is evaluated with the “unstructured” covariance option selected, 
and the package then estimated the covariance. However, from each of 
these models, the covariance between intercept and slope is estimated 
to be zero. Therefore, a simpler covariance matrix structure, such as a 
variance component (diagonal) matrix can possibly be used to achieve 
a better model with lower computational requirements. In model 5, 
the process of model 4 is repeated, but with the “variance component” 
option selected for the form of the covariance matrix rather than 
“unstructured” for the calculations. In this way, it can be seen that a 
better fit to the data (in terms of information criteria) can be achieved 
by using the simpler covariance matrix (Table 8). The coefficients, their 
standard errors and significance levels for this simpler model (model 
5), are given in Table 7. The equation for model 5 is given by;

When comparing all five models, the lowest AIC, BIC and -2 LL 
values are found for model 5, and we conclude that this is the best-
fitting model for our data. The results from all five models indicated 
that statistically significant parameters are diagnoses of CVD and of 
diabetes to account for the changes in initial value of eGFR (i.e. the 
intercept) across patients, whereas the parameters included to describe 
the progression of CKD (i.e. the slope), and the effect of co-morbidities 
on this are the interaction with time terms of the diagnoses of anaemia 
and of CVD in all cases.

For evaluation and interpretation in terms of eGFR values, values 
obtained using model 5 are transformed back by exponentiation (i.e. 
the inverse of taking the natural logarithm), and then subtracting the 
result from 107 to give values to give meaningful model-predicted 
eGFR values. The mean eGFR value at time zero is found from model 
5 to be 49.0257, given that the patient has not being diagnosed to have 
CVD or diabetes. If the patient has been diagnosed to have only CVD 
at time zero, this eGFR value rises to 50.9076, whereas if the patient 
has been diagnosed to have only diabetes at time zero, the resulting 
eGFR value is 51.8531. This means that both diagnoses of CVD and 
of diabetes tend to increase the initial eGFR value, with the effect of 
having diabetes being more influential than that of diagnosis of CVD 
at baseline. However, each year increase in time results in a decrease in 
this predicted eGFR value by a factor of 0.9964, if the patient has none 
of these co-morbidities. Thus the patient has not being diagnosed to 
have CVD or diabetes at time zero, then this initial eGFR value (i.e. 
49.0257) would be expected to decrease to 48.8515 after one year. This 
decrease will be more if the patient has either anaemia, CVD or both 
(Figure 8).

Each regression coefficient is estimated by using a robust method, 
hence resulting in the corresponding standard errors being low. The 
regression coefficients for the parameters affecting the progression of 
CKD are lower standard errors (less than 0.005) than those for the 
regression coefficients for the parameters affecting the initial eGFR 
value (between 0.010 and 0.015).

The higher eGFR values observed for patients with CVD indicates 
that for some initial period, they will have better (i.e. higher) eGFR than 
patients without that disease. However, the fast rate of eGFR decrease 
for patients with CVD results in lower eGFR values than non-CVD 
patients after some time, typically around 4.125 years. The predicted 
eGFR values obtained from each model for “typical” patients with each 
disease combination are shown in Figures 4-8. 

Conclusion
The most efficient ways of analysing longitudinal data with repeated 

measurements when the data is incomplete and unbalanced are by 
using the methodologies known as Linear Mixed Models (LMMs) and 
Generalized Linear Mixed Models (GLMMs). LMMs are used when 
the outcome measure can be assumed to follow a normal distribution, 
whereas GLMMs are applied otherwise, when this normality assumption 
is removed. However, some standard distribution should be assumed in 
order to perform the GLMM approach, and here a gamma distribution 
is used since the distribution of the outcome is skewed. Furthermore, a 
natural logarithm link function is used to transform the response. Here, 

( ) ( ) ( )
( ) ( ) ( ) ( )

ln(107 ) 3.869 –  0.006 time    0.064 Diabetes diagnosis     0.050 CVD diagnosis

–   0.015 Anaemia diagnosis  x time   –  0.007 CVD diagnosis  x time

− = + +eGFR

                                                     (9)

ln(107 ) 4.060 0.003" " 0.052( )
0.033( ) 0.009( )
0.005( )

− = + −
− + ∗
+ ∗

eGFR time Diabetes diagnosis
CVD diagnosis Anaemia diagnosis time
CVD diagnosis time

(10)

ln(107 ) 4.060 0.003" " 0.050( )
0.033( ) 0.008( )
0.005( )

− = + −
− + ∗
+ ∗

eGFR time Diabetes diagnosis
CVD diagnosis Anaemia diagnosis time
CVD diagnosis time

(11)
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the result obtained from the GLMM approach used in model 5 indicates 
that when a patient has been diagnosed to have CVD or diabetes, that 
patient will have a higher initial eGFR value compared with a patient 
without those diseases. However, having either CVD or anaemia will 
increase the rate of decline of eGFR, and hence the progression of CKD. 
The models could be improved if a distribution that better fits the data 
is used, instead of assuming a gamma distribution. 

The results of this study are consistent with those of previous 
research on the progression of CKD [26]. However, our work is based on 
a large sample of routinely-collected General Practice patient records, in 
contrast to the cross-section controlled studies or clinical trials. Our results 
provide evidence that the methodological approach presented here applied 
to this routinely collected data is a useful and appropriate mechanism for 
investigating dynamic relationships within health-related data. 
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Figure 4: Graphs of eGFR against time for typical patients with particular 
disease combinations, as predicted by Model 1.

Figure 5: Graphs of eGFR against time for typical patients with particular 
disease combinations, as predicted by Model 2.

Figure 8: Graphs of eGFR against time for typical patients with particular 
disease combinations, as predicted by Model 5.

Figure 7: Graphs of eGFR against time for typical patients with particular 
disease combinations, as predicted by Model 4.

Figure 6: Graphs of eGFR against time for typical patients with particular 
disease combinations, as predicted by Model 3.
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