GET THE APP

..

Journal of Computer Science & Systems Biology

ISSN: 0974-7230

Open Access

Volume 7, Issue 2 (2014)

Research Article Pages: 54 - 61

Detection of Key Residues Involving Functional Divergence into the Translation Elongation Factor Tu/1A Family Using Quantitative Measurements for Specific Conservation of Protein Subfamilies

Yosuke Kondo

DOI: 10.4172/jcsb.1000138

Delivery of an aminoacyl-tRNA to the ribosomal A-site during protein biosynthesis is mediated by elongation factor Tu/1A (EF-Tu/1A). This function is inferred as a common function of the EF-Tu/1A family. Moonlighting functions and several functional divergences are speculated in the EF-Tu/1A molecules such as actin and fibronectin binding functions. Two variant eEF1A forms, referred to as eEF1A1 and eEF1A2, are surmised to have different actin binding affinities. Mycoplasma pneumoniae EF-Tu has higher fibronectin binding affinity than M. genitalium EF-Tu. Incidentally; quantitative description for specific conservation of protein subfamilies could be helpful for assessment of the functional differences. Our paper defines two types of variability measurements of a multiple sequence alignment site. One is based upon a substitution matrix and sequence weights. The other is based upon information entropy. These variabilities are converted into a specific conservation score by the comparison of different two groups in the evolutionary branches including a target protein. Our paper describes whether the conservation score can divide different residues between two sequences with functional differences into the actin or fibronectin binding residues and the others. The result shows that the functional divergence involving the actin and fibronectin binding functions of the EF-Tu/1A molecules highly correlates with the evolutionary branches supposedly dividing their sequences. This implies that an inherent property of amino acids is an essential factor for the functional differences of the actin and fibronectin binding residues. Our paper describes one possible story for identification of key residues involving functional divergences of the human eEF1A1 and eEF1A2 molecules under the conjecture that the property of amino acids is critical. We expect that such quantitative approach is effective for further assessment of functional differences of the EF-Tu/1A subfamilies and helpful for detection of key residues involving functional divergence of protein families.

Research Article Pages: 62 - 71

A Review of Disease Grading and Remote Diagnosis for Sight Threatening Eye Condition: Age Related Macular Degeneration

Alauddin Bhuiyan, Di Xiao and Kanagasingam Yogesan

DOI: 10.4172/jcsb.1000139

Age-related macular degeneration (AMD), a retinal disorder is the leading cause of vision loss in elderly people in developed countries. Currently, colour fundus imaging is used as a gold standard to assess individual for initial screening of AMD. In this paper, we examine the existing techniques for AMD screening using colour fundus imaging. The aim of the paper is to analyse and review the automated and semi-automated methods for detecting AMD pathologies such as drusen and geographic atrophy (GA) using colour fundus imaging. We intend to provide a brief description, highlighting the key points of the performance measurement and a framework for the existing research. We emphasize that to date; existing drug treatment can stop the progression of AMD and there is no drug or treatment to cure AMD. Therefore, the only feasible option is to prevent the incidence of AMD and avoid this fatal eye disease as well as unnecessary vision loss. For this, a mass screening system that enables remote diagnosis of AMD should be implemented for taking preventative measures in the early stage of AMD. Considering this, we discuss the open problems for automated AMD identification systems using colour fundus imaging and provided future directions for remote diagnosis and screening systems using colour fundus imaging and telemedicine platform

Google Scholar citation report
Citations: 2279

Journal of Computer Science & Systems Biology received 2279 citations as per Google Scholar report

Journal of Computer Science & Systems Biology peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward