δ=1.2
δ=1.3
δ=1.4
κ
Test
n
α
1 − β
n
α
1 − β
n
α
1 − β
0.1
L
1
534
.048
.903
269
.046
.906
169
.044
.907
L
4
508
.051
.897
250
.051
.896
155
.053
.893
0.5
L
1
432
.047
.905
217
.046
.907
137
.046
.909
L
4
411
.051
.899
203
.052
.901
125
.053
.897
1.0
L
1
356
.047
.907
178
.045
.909
112
.044
.912
L
4
339
.050
.904
167
.050
.903
103
.049
.905
2.0
L
1
306
.046
.910
153
.043
.915
97
.042
.922
L
4
292
.049
.907
144
.049
.910
89
.048
.913
5.0
L
1
288
.046
.912
144
.044
.917
91
.042
.925
L
4
275
.050
.909
135
.049
.912
84
.049
.916
δ=1.5
δ=1.6
δ=1.7
κ
Test
n
α
1 − β
n
α
1 − β
n
α
1 − β
0.1
L
1
121
.045
.908
93
.044
.909
75
.043
.911
L
4
109
.053
.897
82
.052
.893
66
.052
.894
0.5
L
1
97
.044
.912
75
.042
.913
60
.043
.910
L
4
88
.053
.900
66
.053
.898
53
.053
.900
1.0
L
1
80
.043
.916
61
.042
.916
49
.041
.919
L
4
72
.051
.904
55
.050
.907
44
.051
.908
2.0
L
1
69
.042
.927
53
.040
.929
43
.040
.934
L
4
63
.049
.918
47
.050
.916
38
.049
.921
5.0
L
1
65
.040
.930
50
.039
.935
40
.040
.937
L
4
59
.049
.919
45
.049
.924
36
.048
.928
δ=1.8
δ=1.9
δ=2.0
Test
n
α
1 − β
n
α
1 − β
n
α
1 − β
0.1
L
1
63
.041
.911
54
.042
.911
47
.041
.909
L
4
54
.055
.893
46
.056
.891
40
.055
.892
0.5
L
1
50
.041
.912
43
.041
.913
38
.041
.915
L
4
44
.055
.902
37
.053
.897
32
.054
.894
1.0
L
1
41
.040
.921
35
.040
.921
31
.040
.925
L
4
36
.051
.908
31
.052
.911
27
.052
.912
2.0
L
1
36
.038
.938
31
.038
.940
27
.038
.942
L
4
31
.048
.920
27
.050
.925
23
.049
.922
5.0
L
1
34
.040
.943
29
.038
.945
25
.036
.943
L
4
30
.048
.930
25
.048
.929
22
.048
.932
Table 1:
Sample size, simulated empirical type I error (α), and power (1−β) of test statistics L
1
and L
4
based on 100,000 simulation runs from the Weibull distribution with nominal type I error of 0.05 and power of 90% (one-sided test).