1/DTD/xhtmL1-transitional.dtd"> Table 1
    δ=1.2 δ=1.3 δ=1.4
κ Test n α 1 − β n α 1 − β n α 1 − β
0.1 L1 534 .048 .903 269 .046 .906 169 .044 .907
  L4 508 .051 .897 250 .051 .896 155 .053 .893
0.5 L1 432 .047 .905 217 .046 .907 137 .046 .909
  L4 411 .051 .899 203 .052 .901 125 .053 .897
1.0 L1 356 .047 .907 178 .045 .909 112 .044 .912
  L4 339 .050 .904 167 .050 .903 103 .049 .905
2.0 L1 306 .046 .910 153 .043 .915 97 .042 .922
  L4 292 .049 .907 144 .049 .910 89 .048 .913
5.0 L1 288 .046 .912 144 .044 .917 91 .042 .925
  L4 275 .050 .909 135 .049 .912 84 .049 .916
    δ=1.5 δ=1.6 δ=1.7
κ Test n α 1 − β n α 1 − β n α 1 − β
0.1 L1 121 .045 .908 93 .044 .909 75 .043 .911
  L4 109 .053 .897 82 .052 .893 66 .052 .894
0.5 L1 97 .044 .912 75 .042 .913 60 .043 .910
  L4 88 .053 .900 66 .053 .898 53 .053 .900
1.0 L1 80 .043 .916 61 .042 .916 49 .041 .919
  L4 72 .051 .904 55 .050 .907 44 .051 .908
2.0 L1 69 .042 .927 53 .040 .929 43 .040 .934
  L4 63 .049 .918 47 .050 .916 38 .049 .921
5.0 L1 65 .040 .930 50 .039 .935 40 .040 .937
  L4 59 .049 .919 45 .049 .924 36 .048 .928
    δ=1.8 δ=1.9 δ=2.0
  Test n α 1 − β n α 1 − β n α 1 − β
0.1 L1 63 .041 .911 54 .042 .911 47 .041 .909
  L4 54 .055 .893 46 .056 .891 40 .055 .892
0.5 L1 50 .041 .912 43 .041 .913 38 .041 .915
  L4 44 .055 .902 37 .053 .897 32 .054 .894
1.0 L1 41 .040 .921 35 .040 .921 31 .040 .925
  L4 36 .051 .908 31 .052 .911 27 .052 .912
2.0 L1 36 .038 .938 31 .038 .940 27 .038 .942
  L4 31 .048 .920 27 .050 .925 23 .049 .922
5.0 L1 34 .040 .943 29 .038 .945 25 .036 .943
  L4 30 .048 .930 25 .048 .929 22 .048 .932
Table 1: Sample size, simulated empirical type I error (α), and power (1−β) of test statistics L1 and L4based on 100,000 simulation runs from the Weibull distribution with nominal type I error of 0.05 and power of 90% (one-sided test).