Properties Vascular Resorbable Scaffolds OrthopaedicResorbable Scaffolds
Constraints Constraints
Cell Response Encourage endothelial cell attachment, but not smooth muscle cell attachment, as it may have a negative effect on vessel patency [10,14] Encourage new bone formation through both osteoblast and osteoclast attachment and proliferation, but also avoid fibrous capsule formation [15]
Mechanical Integrity > 8 months
> 6-12 months [1,7,13,16]
> 6 months (Based on longest
healing time for neck of femur) [16]
Yield Strength > 200MPa [17] > 230MPa [18]
Ultimate Tensile Strength > 300MPa [17] > 300MPa [17]
Elongation to Failure
(%Strain)
> 15-18%
Higher ductility is ideal for higher flexibility while expanded while in arteries, but still need enough radial force to open lesions [17,19]
> 15-18% [17]
Elastic Modulus Low elastic modulus to be able to bend around the human circulatory system, but still stiff enough to retain necessary hoop and radial strengths for artery support [20-22] As close to cortical bone as possible to avoid stress-shielding
(10-20 GPa) [3]
Fatigue Strength at 10^7 cycles (Mpa) > 256
Strength must be sufficient to prevent acute recoil and negative remodeling [2,4,17,29]
> 256 [17,19]
Elastic Recoil on Expansion < 4% [17] N/A
Hydrogen Evolution < 10 uL/cm^2/day
(Though blood flow may increase this maximum tolerance) [17,25]
< 10 uL/cm^2/day [25,26]
Table 1: Desired properties for resorbable materials based on application.