Algorithms No. of attributes Time elapsed in second Accuracy in % WTPR WFPR WROC
J48 Decision tree 28 0.48 95.90 96.5 3.5 0.998
26 0.45 95.86 96.4 3.7 0.996
24 0.38 95.87 96.3 3.7 0.989
22 0.37 95.87 96.3 3.7 0.989
20 0.34 95.80 96.3 3.7 0.989
16 0.23 94.77 94.7 5.3 0.99
Random tree decision tree 28 0.08 95.75 96.2 3.9 0.980
26 0.05 95.90 96.3 3.8 0.982
24 0.09 95.59 96.2 3.9 0.981
22 0.11 95.80 96.2 3.8 0.980
20 0.13 95.45 96.0 4.0 0.981
16 0.05 94.75 94.8 5.3 0.98|1
REP tree decision tree 28 0.27 95.90 96.3 3.7 0.990
26 0.42 95.86 96.3 3.7 0.989
24 0.22 95.84 96.2 3.8 0.987
22 0.22 95.84 96.2 3.8 0.988
20 0.36 95.58 96.1 3.9 0.988
16 0.13 94.72 94.3 5.7 0.983
Multilayer perceptron ANN 28 2567.88 94.82 94.8 5.2 0.977
26 3797.87 95.13 95.1 4.9 0.975
24 1418.18 95.05 95.0 5.0 0.977
22 1342.15 95.07 95.1 5.0 0.976
20 950.23 94.99 95.0 5.0 0.980
16 858.6 94.60 94.6 5.4 0.979
Table 12: Comparison of performances on J48, Random tree, REP tree and multilayer perceptron algorithms to predict under-five children admission to pediatric ward in NEMM Hospital, 2012.