EXP1 VAS (mL) t(s) VAMP (mL) Vasc(m/h) F(V)(nu)
  75 153 100 2.48 0.94
V0=39.6 mL 100 193 215 4.22 1.59
K (m/h)=2.50±0.15 125 185 250 5.12 2.24
150 182 350 7.29 2.89
r=0.99 175 124 275 8.40 3.53
  200  96 275 10.86 4.18
EXP2 VAS (mL) t(s) VAMP (mL) Vasc(m/h) F(V)(nu)
  75 19 30 5.98 1.63
V0=28.5 mL 100 32 75 9.02 2.51
K (m/h)=3.53±0.45 125 35 100 10.92 3.39
150 36 150 15.66 2.89
r=0.97 175 - -   -
  200 77 240 11.89 7.18
EXP3 VAS (mL) t(s) VAMP (mL) Vasc (m/h) F(V) (nu)
  75 183 100 2.07 0.94
V0=38.6 mL 100 177 210 4.50 1.59
K (m/h)=2.62±0.13 125 141 225 6.05 2.24
150 137 275 7.60 2.89
r=0.99 175 - - - -
  200 123 350 10.78 4.18
EXP4 VAS (mL) t(s) VAMP (mL) Vasc(m/h) F(V) (nu)
  75 18 50 10.58 1.50
V0=30 mL 100 20 70 13.07 2.33
K (m/h)=2.5±0.28 125 26 90 13.22 3.17
150 28 125 16.90 4.00
r=0.98 175 - - - -
  200 37 190 19.25 5.67
# EXP=Experiment number
V0=AS initial volume in the graduated cylinder (t=0 sec) in mL K=AS cohesion coefficient (m/h) r=Fitting correlation coefficient
VAS=Sludge volume to obtain (or to maintain) in the graduated cylinder image) (mL)
t=Time (in sec) necessary to attain (or to maintain) VAS
VAMP=Elapsed volume from the Squibb funnel during the above time
VASC=Ascending velocity in the graduated cylinder where A is the section of the graduated cylinder minus the section of the glass tubing supplying the effluent; m/h)
imageto keep the Degrémont [1] representation (nu=no units)
Table 3: Typical results of an experiment.