Year Technique Accuracy
1992
1995
1996
1998
1999
2002
2004
2005
2006
2012
2012
2013
[37] Self-Organizing  Feature Map (SOFM)
[57] Integration of Parametric Pattern Recognition  algorithm  (PPR) and
Artificial Neural Network (ANN)
[1] SOFM and Learning  Vector Quantization (LVQ) [16] Modular  ANN
[17] SOFM, LVQ and statistical method  based on Euclidean  distance
[40] Radial  Basis Networks  (RBN)  and Decision Trees
[25] Continuous Wavelet  Transform (CWT) and a multi-channel ANN
[27] Multi-Layer  Perceptron (MLP)
[76] Wavelet-Based Neural Network  (WNN)
[7] SOFM and LVQ
[66] Principal  Component Analysis (PCA)  and Probabilistic Neural Net- work (PNN)
[2] PCA  and PNN
76-83%
80-90%
60-80%
79.6%.
90%
89%

91.6%
90.7%
97.6%.
91.72%
68-94.3%
2001
2006
2007
2012
[14] Fuzzy logic
[63] Adaptive  fuzzy k-NN classifier (AFNNC) [35] Pattern Discovery (PD)  algorithm
[20] fuzzy logic

88.4%
96.6%

97%
1996
2004
2010
[56] combined ANN and genetics-based  machine learning (GBML) models
[78] Fuzzy integral  of multiple  ANN [46] Neuro-Fuzzy  system (NFS)

80%
88.58%
90%
2002
2005
2009
2010
2010
2010
[40] Support  Vector  Machine (SVM) with  one against  one training  algorithm
[27] SVM
[41] Multiclass SVM
[42] Binary SVM
[42] Fuzzy Support  Vector Machine (FSVM) [38] SVM

89%
92.3%
100%
100%
99.6%
70.4%
1995
2012
2012
2013
[60] Principle  Component  Analysis  and  multivariate discriminant  algorithm 70.4-76.5%
[44] Decision Tree
[74] FSVM  classifier  combined  with  statistical features  extracted  from Discrete  Wave Transform (DWT)
[75] hybridization of the Particle Swarm Optimization (PSO)  and SVM
96.33-96.50
97.67%
96.75%
Table 1: Summary of major methods and their accuracy used for EMG classification in the field of neuromuscular pathology.