Balloon Angioplasty of Subatretic Coarctation of the Aorta Using Progressive Larger Balloons

José Luiz Balthazar Jacob* and Dário Gitti de Faria

Department of Hemodynamic and Interventional Cardiology of the Instituto de Moléstias Cardiovasculares de São José do Rio Preto, São Paulo, Brazil

Abstract

We report a case of subatretic coarctation of the aorta with dilated ascending aorta in a three-year-old boy weighing 14 Kg. Surgical treatment was indicated, but it was refused. Balloon angioplasty of the coarctation was performed using progressive increase in the diameter of the balloons. The diameters of the balloons ranged from 2 to 10 mm, and the gradient decreased from 60 down to 12 mmHg. We conclude that the balloon angioplasty with careful progressive increase in the balloon diameter is safe in the treatment of subatretic coarctation of the aorta with good results.

Keywords: Balloon dilatation; Congenital disease of the aorta; Congenital heart disease

Introduction

Balloon dilatation for the treatment of patients with native or recurrent coarctation of the aorta is widely accepted [1]. But balloon dilatation in children less than two years of age is associated with vessel recoil and recurrence of the lesion [2]. Over distention of the coarctation can cause aortic wall injury [3,4]. Recently, stents have been used in older children or young adults to solve these complications [5]. We report a patient with native subatretic coarctation of aorta and important dilatation of the ascending aorta. Because the surgical treatment was refused by the parents, the patient was treated by balloon angioplasty using progressive larger diameter balloons until reaching a good result.

Case Report

A three-year-old boy was referred to our tertiary cardiology center due to poor physical development and systemic arterial hypertension. On physical examination the weight was 14 Kg, and the blood pressure was 150/100 mmHg in the upper limbs. Radial pulse was strong and the femoral pulse was absent. Blood pressure in the inferior limbs was 80/60 mmHg. The first and second cardiac sounds were loud and a systolic murmur was audible in the left sternal line.

Electrocardiogram revealed left ventricular hypertrophy and the chest radiography showed normal cardiothoracic ratio with dilatation of the ascending aorta in frontal view. Color echodopplerangiography confirmed dilatation of the ascending aorta and severe coarctation, with normal volumes and ejection fraction of the left ventricle. The gradient across the coarctation was 55 mmHg. Due to aortic dilatation that suggested possible disease of the aortic wall, surgical treatment was indicated, but refused by the parents. Diseases of the aortic wall increase the risk of percutaneous procedure for treatment of aortic coarctation. Even the surgical risk is higher in these cases.

We performed cardiac catheterization by the right femoral artery approach. The blood pressure in the aorta below the coarctation was 95/60 mmHg. It was impossible to reach the ascending aorta and the angiography performed below the coarctation showed flow absence to the aorta above the coarctation, suggesting interruption of the aorta. Right brachial approach was attempted and the blood pressure in the ascending aorta was 155/90 mmHg. Angiographic study revealed subatretic coarctation with dilatation of the ascending aorta (23.5 mm of diameter). The left and right thoracic internal arteries were very dilated.

A Lehman 5F catheter was positioned near the subatretic coarctation and angiography by hand showed the coarctation diameter (Figure 1A). It was impossible to cross the coarctation using the Lehman catheter. A coronary angioplasty guide wire 0.014 inch through the Lehman catheter crossed the severe stenosis and reached the descending aorta. On the guide wire 0.014 inch a 2 mm diameter coronary angioplasty balloon catheter was placed in the coarctation area and two inflations were made (Figure 2A). Another coronary angioplasty catheter with 4 mm diameter was used and two more inflations were made (Figure 2B). Angiography showed increase of the flow across the coarctation. Balloon catheters with 6 mm, 8 mm (Figure 2C) and 10 mm of diameter (Figure 2D) were used sequentially and successful dilatation was obtained with good blood flow to the abdominal aorta (Figure 1B). The gradient across the coarctation decreased from 60 mmHg to 12 mmHg.

Echocardiographic study showed normal flow pattern in the abdominal aorta. The in-hospital evolution was uneventful and the patient was discharged two days after the procedure. In a one year...
Follow-up the blood pressure was 100/60 mmHg in the upper limbs and the gradient across the coarctation by echocardiographic study was 15 mmHg with normal flow pattern in the abdominal aorta.

Discussion

In a three-year-old boy, balloon angioplasty for the treatment of aortic coarctation is widely accepted. The chance of recurrence in children older than two years decrease and stent implantation is not performed in children less than 20 kg. In older children or young adults the subatretic coarctation is in general treated with covered stent implantation to avoid aortic wall injury or pseudoaneurysm formation. In our case the important dilatation of the ascending aorta suggested a possible disease of the aortic wall which increased the risk of aneurysm or aortic wall injury caused by balloon angioplasty. For this reason surgical treatment was indicated, but it was refused by the parents. We decided to perform the balloon angioplasty with progressive increment in the diameter of the balloons until reaching the coarctation area. In this case, despite of the good results after one year, a close follow-up is necessary because complications can occur years after the procedure.

Conclusion

We conclude that subatretic coarctation of the aorta in children less than 20 Kg, in whom the covered stent implantation is not an option and the surgery is refused, the treatment by balloon angioplasty using careful increment in the diameters of the balloons until reaching a good result is possible.

References

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- User friendly/feasible website-translation of your paper to 30 world’s leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:
- 250 Open Access Journals
- 20,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: www.editorialmanager.com/clinicalgroup