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Introduction
When there is a rare disease in a population, it is inefficient to take 

a random sample to estimate a parameter. Instead one takes a random 
sample of all nuclear families with the disease by ascertaining at least 
one sibling (proband) of each family. In these studies, an estimate of 
the proportion of siblings with the disease will be inflated. Sometimes 
the situation is even worse; the investigator takes all the families that 
appear. Thus, there is a selection bias [1].

Fisher [2] illustrated the importance of adjusting for the selection 
bias in genetics; see also [3] for a discussion of ascertainment bias in 
the analysis of family data. For example, studies of the issue of whether 
a rare disease shows an autosomal recessive (dominant) pattern of 
inheritance, where the Mendelian segregation ratios are of interest, have 
been investigated for several decades. The Mendelian segregation ratio is 
p = 0.5 for an autosomal dominant disease and p = .25 for an autosomal 
recessive disease. These follow from the first law of Mendel. For a 
rare disease one would be interested to know whether it is autosomal 
dominant or recessive. That is, whether p = 0.5 or p = .25 respectively. 
But because the disease is rare, the investigator will select all those 
nuclear families that appear. Then there is a selection bias; specifically 
the estimates will be inflated. See also chapter 2 of [4] and chapter 2 of 
[5] for very clear pedagogy on this problem. How do we correct for this
ascertainment bias? Non-Bayesian methods are available to correct for
the ascertainment bias. Specifically, see [6] for a review and a discussion
of difficulties associated with maximum likelihood estimation for the
ascertainment bias problem.

Here, we develop a Bayesian analysis to estimate the segregation 
ratio in nuclear families when there is an ascertainment bias. To our 
knowledge this is the first Bayesian approach to the ascertainment 
bias problem in genetics. More importantly, we investigate the effects 
of familial correlation among siblings within the same family. It is 
expected that one sibling getting affected will be related to the other 
siblings because they are in the same nuclear family sharing the same 
genes. In addition, we investigate the effects of heterogeneous familial 
correlations and proband probabilities. Again, these analyses are new 
within the Bayesian paradigm, and there has not been any frequentist 
analysis with heterogeneity. The Bayesian analysis is useful because we 
can obtain exact distributions under the specified model, and we can 

input important prior information (e.g., about the genetic features of 
cystic fibrosis).

Cystic fibrosis is a hereditary disease that affects the mucus glands of 
the lungs, liver, pancreas, and intestines, causing progressive disability 
due to multisystem failure. The CFTR gene, found in Chromosome 7, 
is the cause of cystic fibrosis, where mutations result in proteins that 
are too short because of premature end to production. We have been 
analyzing data on cystic fibrosis for the School of Medicine, Medical 
College of Georgia, and because of confidentiality issues we cannot 
present these data in this paper. Although these data are very sparse 
with only a few individuals reported cystic fibrosis in southern Georgia, 
our data set has the same structure as one that has been used repeatedly 
in the literature.

Table 1 gives a set of data on cystic fibrosis, which was presented 
by Crow [3] to illustrate the need to take account of the method of 
ascertainment in segregation analysis. One can countthe total number 
of offspring to be 269, the total number of affected offspring to be 124, 
and the total number of probands to be 90. Thus, one might estimate 
the segregation ratio to be 124/269 = .4610, and the ascertainment 
probability to be 90/124 = .7258. Again, these simple estimates are too 
inflated. Note that 46.1% is far in excess of the 25% expected on simple 
recessive inheritance (cystic fibrosis is autosomal recessive). One reason 
for the excess is the ascertainment bias - the exclusion of families where 
the parents are heterozygous, but fail to have a homozygous recessive 
child. These would add to the number of normal children and thereby 
reduce the proportion affected. This data set was also used in [4] for 
illustration. 

When all families with affected offspring are ascertained, we say 
that there is complete ascertainment; otherwise there is incomplete 
ascertainment and in this case (unknown to the investigator) there are 
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families with affected siblings who are not probands. When there is 
complete ascertainment, the proband probability is one; otherwise it is 
distinctly less than one. Fisher [2] first analyzed the data using complete 
ascertainment. His analysis was done using a truncated Binomial 
distribution. However, Fisher [2] also described a simpler method for 
the more appropriate incomplete ascertainment for these data. This 
discussion was further developed by Bailey [7] and Morton [8]. In this 
paper, we will focus on incomplete ascertainment as is evident in Table 
1. Crow [3] pointed out for the cystic fibrosis data the need to adjust for 
ascertainment bias and incomplete ascertainment. 

The key idea for the correction of ascertainment bias is to find 
the correct sampling distribution under the ascertainment bias. 
Let x represent the quantity being measured, and let A denote the 
ascertainment event. Without the ascertainment bias, f(x|θ) is the 
sampling distribution for a random sample. This is an example of an 
ignorable selection model. However, when there is an ascertainment 
bias, we need

( ) ( )
( )
,

,
f x A

f x A
f A

q
q

q
=

That is, we condition on the ascertainment event, A. Here f(x| θ, A) 
provides a non- ignorable selection model. In general, the two sampling 
distributions f(x| θ, A) and f(x| θ) are different; f(x| θ, A) is the more 
appropriate sampling distribution. Correcting for ascertainment bias 
means that we need to construct the sampling distribution, f(x| θ, A). 
A simple example, introduced in [2] for complete ascertainment, is on 
the number r siblings affected in a family of size s in a binomial model 
with r> 0. Then,

 ( ) ( ) { }1 / 1 (1 ) , 1,..., .s rr ss
f x r s

r
q q q q− 

= − − − = 
 

Here, A is the event that r > 0, leading to the binomial distribution 
truncated at 0. More importantly the binomial probabilities are being 

re-weighted so that all the mass points are 1, . . . , s. That is, assuming 
that each sib- ling is affected independently, then P (r > 0 | q) = 1 - P 
(none of the s siblings is affected) =1 - (1 - q)s.

The problem of ascertainment bias is not new to survey samplers. 
For finite population sampling, Sverchkov and Pfeffermann [9] defined 
the sample and sample-complement dis- tributions as two separate 
weighted distributions (see [1]) for developing design consistent 
predictors of the finite population total; see also the more recent 
presentation [10]. Malec et al. [11] used a hierarchical Bayesian method 
to estimate a finite population mean whenthere are binary data. These 
works are not directly applicable to our situation, but the ideas they 
portray are important for the issues associated with ascertainment 
bias. For probability proportional to size (PPS) sampling, Nandram 
[12] used surrogate sampling techniques to provide simulated random 
samples by using a model which reverses the selection bias. Under PPS 
sampling, Nandram et al. [13] used a method, developed by [14], to 
perform Bayesian predictive inference when a transformation is needed.

We distinguish between two ascertainment bias problems in 
population genetics. One occurs in the study of rare Mendelian 
disorders, and the other in single nucleotide polymorphism discovery.

We describe the first ascertainment bias problem. It is almost the 
case that a disease is inherited from recessive parents when the disease 
is rare in the entire population. The number of at-risk parents is usually 
small (i.e., the number of parents capable of producing affected siblings 
is very small relative to the number not capable of producing affected 
siblings). So if a sample is taken at random from the entire population, 
there could be no at-risk families. Thus, at-risk families are divided into 
two groups, those with at least one affected sibling and the other with 
no affected siblings. A sample is then drawn from the families with at 
least one affected sibling, thereby introducing an ascertainment bias. 
Thus, a direct estimate of the proportion of affected siblings will be too 
large; one needs to adjust for the ascertainment bias. Our example on 
cystic fibrosis falls in this first category of ascertainment bias problems.

We describe the second ascertainment bias problem. The human 
genome has very low density of polymorphisms, and the single 
nucleotide polymorphism (SNP) discovery has an ascertainment bias. 
The strategy of using a small sample (panel) followed by genotyping of a 
large sample in SNP discovery saves time and money. In SNP discovery 
a small sample of people is taken from the population, and these 
individuals are genotyped for a large number (≈ 106) of nucleotides. 
However, because of the low density of polymorphisms, many of the 
nucleotides of the panel are not polymorphic, and they are eliminated 
from the panel (i.e., they are not variable in the panel). The discovery 
goes on to genotyping a larger sample for the variable nucleotides 
(i.e., the remaining nucleotides). But, if the panel sample was larger, 
some of the discarded nucleotides could have been polymorphic in 
the population. Thus, there is an ascertainment bias. Kuhner et al. [15] 
show that representing panel SNPs as sample SNPs leads to large errors 
in estimating population parameters. Their recommendation to collect 
and preserve information about the method of ascertainment is very 
sensible. Clark et al. [16] point out that ascertainment bias will likely 
erode the power of tests of association between SNPs and complex 
disorders. Nielsen and Signorovitch [17] review some of the current 
methods of SNP discovery, and derive sample distributions of single 
SNPs and pairs of SNPs for some common SNP discovery schemes. 
They also show that the ascertainment bias in SNP discovery has a large 
effect on the estimation of linkage disequilibrium and recombination 
rates, and they describe some methods of correcting for ascertainment 
biases when estimating recombination ratios from SNP data.

In this paper we provide a Bayesian analysis of the ascertainment 
bias problem in which we assume incomplete ascertainment for rare 

Size Affected Proband Families
10 3 1 1
9 3 1 1
8 4 1 1
7 3 2 1
7 3 1 1
7 2 1 1
7 1 1 1
6 2 1 1
6 1 1 1
5 3 3 1
5 3 2 1
5 2 1 5
5 1 1 2
4 3 2 1
4 3 1 2
4 2 1 4
4 1 1 6
3 2 2 3
3 2 1 3
3 1 1 10
2 2 2 2
2 2 1 4
2 1 1 18
1 1 1 9

Table 1: Number of families affected by sibship size, number affected offspring and 
number of probands (Crow 1965).

Sibship sizes are different, ranging 1-10.
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recessive disease, not the SNP problem. The plan of the rest of the 
paper is as follows. In basic models, theory and estimation section, we 
present the basic models, theory, estimation, and a Bayesian analogue 
of the existing method. In Bayesian analysis with familial correlation 
section, we discuss the issue of incorporating a familial correlation in 
the ascertainment model, and we provide a simulation study to assess 
the effect of the ascertainment bias and the familial correlation. In 
heterogeneous probabilities and correlations section, we investigate 
the effect of heterogeneous proband probabilities and familial 
correlations using the cystic fibrosis data. In conclusion section, we 
provide concluding remarks, and we discuss ascertainment bias in SNP 
discovery.

Basic Models, Theory and Estimation
 Thompson [18] discussed many ascertainment models. In this 

paper, we discuss the simplest ascertainment model [5] and [4]. 
Essentially Lange [4] shows how to adjust for the ascertainment bias 
using the EM algorithm [19]; Sham [5] uses Fisher’s scoring. In basic 
selection models section, we describe the basic selection models, 
ignorable and nonignorable, and in Properties of the joint probability 
mass function section, we describe some properties of the joint 
probability mass function for the nonignorable selection model. In 
bayesian method section, we present a simple Bayesian method of the 
ascertainment bias problem.

Basic selection models

Suppose there are n families selected through ascertainment 
sampling. Letting the kth ascertained family have sk siblings, we assume 
that there are rk affected and ak ascertained. In Crow’s data sk vary from 
1 to 10. The simplest ascertainment model specifies that

| , ( , ),

| , ( , ),

ind
k k k

ind
k k k

a r Binomial r

r s p Binomial s p

π π




 

k = 1, . . . , n. This is the basic ignorable selection model. The ak are 
really covariates, and this leads to improved precision. Thus, the joint 
probability mass function of (ak, rk) is

( , | , ) (1 ) (1 ) ,k k k k k kk kr s r a r a
k k

k k

s r
p a r p p p

r a
π π π− −   

= − −   
   

  

                    (1)

ak= 0,...,rk, rk= 0,...,sk, k= 1,...,n. Note that (1) provides the likelihood for 
any family without conditioning on whether it is ascertained or not. 
To adjust for ascertainment bias, we need to restrict (1) to the support 
1≤ak≤rk≤sk,k=1,...,n. This adjustment of the basic ignorable selection 
model gives the basic nonignorable selection model.

The probability that a family with sk siblings is ascertained is
1 (1 ) kspπ− − . This is the probability that there is at least one affected 
sibling (i.e., at least one proband is identified). This leads to the truncated 
probability mass function for the basic nonignorable selection model

(1 ) (1 )
( , | , ) ,

1 (1 )

k k k k k k

k

k kr s r a r a

k k
k k s

s r
p p

r a
p a r p

p

π π
π

π

− −   
− −   

   =
− −

 

                      (2)

                                    ak=1,..., rk, rk=ak,...,sk. Note that (2) provides the likelihood for a family 
that has been ascertained. Thus, in the terminology of missing data, 
while (1) is the complete data likelihood, (2) is the incomplete data 
likelihood. Note that in (2) 1 (1 ) kspπ− − is simply the probability 
that 1≤ak≤rk≤sk, k=1,...,n. Thus, p(ak, rk|π, p) actually includes the 

ascertainment event in the condition; henceforth, it is convenient to 
omit this conditioning.

Now a reasonable assumption is that the families are sampled 
independently. Then the likelihood function for all ascertained families 
is

Likelihood ( )
1

(1 ) (1 ),
1 (1 )

k k k k k k

k

r s r a r an

sk

p pp
p
π ππ
π

− −

=

− −
= Π

− −
                      (3)

The logarithm of the likelihood function of (π, p) in (3) can be 
maximized, and one can use a normal approximation for the joint 
distribution of the maximum likelihood estimators. Sham [5] used the 
method of scoring, and Lange [4] used the expectation maximization 
(EM) algorithm. Nandram et al. [6] described three other algorithms: 
Newton’s method, the Nelder-Mead algorithm and a new simple 
iterative algorithm. For example, for Crow’s data, the EM algorithm 
gives p̂ = .268, π̂ = .359; the standard errors are respectively .0347 and 
.0814 with a small correlation of .248. These are consistent with the 
estimates given by Lange [4] and the algorithms of [6]; Lange [4] did 
not present the standard errors. As pointed by [4], these estimates are 
consistent with the theoretical value of 5 .25 for an autosomal recessive 
as in cystic fibrosis. 

Properties of the joint probability mass function
We describe some useful properties and interpretations of the joint 

probability mass function in (2). 

Using (2), the marginal probability mass function of rk is

(1 ) {1 (1 ) }
( | , ) , 1,..., ;

1 (1 )

k k k k

k

k r s r r

k
k k ks

s
p p

r
p r p r s

p

π
π

π

− 
− − − 

 = =
− −

All other points have zero probability. (This is obtained by simply 
summing over ak.) By using the probability mass function, p(rk|p, π), 
one can show that

1(1 )(1 )( | , ) 1 .
1 (1 )

k

k

s

k k s
p pE r p s p

p
π ππ

π

− − −
= + − − 

  

                    (4)

Thus, E(rk |p, π)is bigger than skp with the discrepancy related to 
p, π and sk. With some cumbersome algebraic manipulation, it can be 
shown that

Var(rk|p, π)=skp(1−p)(1−Qk),

where
2

2
2

(1 ) (1 )(2 1)(1 ) .
1 (1 ) 1 (1 ) (1 )

k

k k

s
k

k s s

spQ p p
p p p p

π π ππ
π π π

−  − − −
= − − − − − − − 

Note Qk≤1 (i.e., Qk is an adjustment factor). So that if Qk≥0, then 
Var(rk|p, π)≤skp (1-p), the situation in which rk|p~Binomial (sk, p). 
For example, if sk= 1, then Qk = {1−π p−2π (1−π)}/ πp (1−πp). If, in 
addition, (reasonable for autosomal recessive), then 0 ≤Qk≤1 and 
Var(rk|p, π) ≤ p (1−p).

Also, for a family that has not been ascertained (i.e., ak = 0), it is 
easy to show that

)( ) (1
( | , ) , 1,..., ;

1 (1 )

k k k

k

k a s a

k
k k ks

s
p p

a
p a p a s

p

π π
π

π

− 
− 

 = =
− −

Here, (1 ) {(1 )k ks sp pπ π− − − is the probability of having at least 
one affected sibling in the kth family with ak= 0.

The marginal probability mass function of ak is
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All other points have zero probability. It is easy to show that
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and

Var { } 11 ( 1) (1 )
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k
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k

k k s

s p p
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p
π π

π π π
π
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Thus, as expected, E(ak| p, π) increases from sk πp, and Var(ak | p, π) 
decreases from sk π p(1-π p).

We can also show that the correlation between ak and rk is 
nonnegative as follows. It is easy to show that

Cov { }{ }
{ }

1
2

(1 )( , | , ) 1 (1 ) 1 ( 1) .
1 (1 )

k

k

s k
k k k s

s p pr a p p s p
p

ππ π π
π

− −
= − − + −

− −

But because 1(1 ) {1 ( 1) }ks
kp s pπ π−− − + − is a nonnegative decreasing 

function of sk starting at sk= 1 with the value of 1, the correlation must 
be nonnegative.

The conditional probability mass function of rk given ak is also 
interesting. It is easy to show that

{(1 ) } (1 )( | , , ) , ,..., .
1 (1 )

k k k k

k k

r a s r
k k

k k k k ks a
k k

s a p pp r a p r a s
r a p

ππ
π

− −

−

−  − −
= = − − − 

That is, rk-ak |ak, π, p~Binomial{sk-ak,(1- π)p/(1- π p)}. Then

and 
2

(1 ) (1 )E( | , , ) {1 }
1 1

1Var( | , , ) ( ) (1 ) .
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k k k k

k k k k

p pr a p s a
p p

r a p s a p p
p

π ππ
π π

ππ
π

− −
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−

= − −
−

Thus, in the conditional probability mass function, expectation 
increases with ak and variance decreases with ak. That is, knowledge of 
ak is informative, consistent with [5]. Sham [5] used data from [2] to 
illustrate this issue, but here we have obtained an analytical argument.

Bayesian method
We consider Bayesian inference about p and π in which (3) is the 

likelihood function. This is accomplished by using the noniformative 
proper priors

, iidp π


 Uniform(0,1).

Then, using Bayes’ theorem, the joint posterior density of (π, p) is

~~ 1

(1 ) (1 )
( , | , ) ,0 , 1.

1 (1 )

k k k k k k

k

k r s r a r a

n
k
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s
p p

r
p p a r p

p

π π
π π

π

− −

=

 
− − 

 ∝ Π < <
− −

 

                      (6)

Note that the uniform is updated using the likelihood (3) to 
get the joint posterior density in (6). Also, note that it is the term, 
1 (1 ) kspπ− − , in the denominator of (6) which primarily contributes 
to the complexity of the two-dimensional posterior density.

To make posterior inference about (p, π), one can use standard 
numerical integration. However, it is simpler and more convenient 
to draw a random sample from the joint posterior density. Of course, 
one can use a Metropolis sampler to fit (draw a sample) from (6). This 
requires monitoring of convergence and it provides dependent samples. 
It is much simpler and more elegant to draw a sample from (6) using a 
grid method because the posterior density lies in the unit square, and 
it is easy to calculate. Thus, in this case we do not need to use Markov 
chain Monte Carlo methods.

To draw the bivariate sample of the posterior density of (p, π), we 
use a grid method in the unit square (0, 1) by (0, 1), the full domain 
of the joint posterior density (p, π) in (6). Our method allows us to 
construct a discrete bivariate approximation to the joint posterior 
density. We divide the interval (0, 1) into 100 intervals; so there are 
10,000 little squares in the original unit square. We obtain the heights 
of the posterior density (without the normalization constant) at the 
center of each of the 10,000 squares. Because these little squares have 
the same area, the heights of the bivariate density are proportional 
to the posterior probabilities that (p, π) fall in each of these squares. 
Thus, we have constructed a joint posterior mass function of (p, π) on 
very fine grids. It is easy to draw a sample from the discrete bivariate 
probability mass function by using the cumulative distribution method. 
Each draws gives us one of the 10, 000 little squares, and then a random 
jittering is performed in the selected square. This is actually a random 
draw of one of the 10,000 squares with probabilities proportional to the 
heights of the little squares. Then within the selected square we choose 
a point at random by drawing two uniform random variables (i.e., 
uniform random jittering). This is a very accurate random draw from 
the joint posterior density in (6). We draw M = 10, 000 samples from 
this approximation for posterior inference in a standard Monte Carlo 
procedure with independent samples, not a Markov chain. Because of 
the random jittering the numbers are different with probability one. 
This goes at the blink of an eye! For example, letting (p(h), π (h)), h = 
1, . . . , M, denote the probability sample of size M from the bivariate 
distribution, then for any function H (p, π) we can obtain the posterior 
mean as

( ) ( ) ( )
1

1( , ) | , ( , ).M h h
hE H p a r H p

M
π π

=
≈ Σ



While our grid method is similar to the method of Gelman, Carlin, 
Stern and Rubin, 2004 [24], there is one important difference. We know 
that the domain of the joint posterior density is in (0, 1) 2, the unit 
square, and for all practical purposes (p, π) are not on the boundary of 
the parameter space. Also, we can explore the entire domain using small 
grids of dimension .012. Thus, unlike [24], we do not need to search 
for the ‘modal region’ of the posterior density. Moreover, the posterior 
density (without the normalization constant) is easy to calculate. In 
fact, our procedure is an improvement over the grid method described 
in [24]. 

For Crow’s data the posterior mean, posterior standard deviation 
and the 95% credible intervals for p are .271, .035, (.206, .340) and for ? 
are .364, .079 and (.210, .513). Note that the 95% credible interval for p 
contains .250, consistent with an autosomal recessive.

Bayesian Analysis with Familial Correlation
We investigate the effect of familial correlation among siblings 

within the same family. We start by adding an intra-class correlation 
to the model with a single proband probability. One can expect an 
intra-class correlation because siblings of the same nuclear family are 
genetically similar to some degree. For example, one sibling getting 
cystic fibrosis will be related to another getting infected because they 
have some common genes. Our new model contains a nonnegative 
intra-class correlation θ similar to [20]; see also [21] for developments 
in two-way categorical tables and the effects of intra-class correlation 
to the chi-square test. We will also describe a model that does not 
incorporate any information about the ascertainment bias; this is the 
ignorable selection model. The model that incorporates the selection 
bias will be called the nonignorable selection model.
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Sampling distributions

First, we describe the sampling distribution, p(rk,ak |p, π, θ), where 
θ is the intra-class (familial) correlation. With sk siblings in the kth 
family, using a formula of [20], we have

(1 ) (1 )(1 ) ,    0,

( | , ) (1 )  (1- ) ,  1,..., 1,

(1 ) ,    ,

k

k k k

k

s
k

k r s r
k k k

k
s

k k

p p r
s

p r p p p r s
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where k=1,...,n, 0 ≤ θ ≤ 1. Note that when sk=1 there are only three 
possible values of (ak, rk) with positive probabilities; these are (0,0), (0,1) 
and (1,1).

When θ=0, we get the original model, and when θ=1,we get 
p(rk=sk|p, θ) = p=1-p(rk= 0 |p, θ) with p(rk|p, θ)= 0, rk= 0,..., sk-1. With a 
perfect correlation, in a family there is effectively only one observation. 
Note that E(rk| p, θ) = skp and var(rk |p, θ) = skp(1-p){1+(sk-1) θ}. Thus, 
the intra-class correlation increases the variance, but it keeps the mean 
unchanged.

It is useful to note that for rk = 1, . . . ,sk,
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Then, it is easy to show that E(rk|p,θ)=Skp[1+w1(1-p)/p+(1-w1)
k ks s(1-p) /{1-(1-p) }],  where w1=θp/[θp+(1-θ ks{1-(1-p) }].  Thus, when 

θ=0, w1=0 and E(rk |p, θ)= k ks s
ks p(1-p) /{1-(1-p) };  and when θ =1, w1=1 

and, as expected, E(rk|p,θ)=sk. Here (1- p)/p is the odds for no affected 
sibling in a family, and k ks s(1-p) /{1-(1-p) }  is the odds of at least one 
affected sibling.

In Appendix A, we show how to obtain the joint probability mass 
function of (ak, rk) for ascertained families, 1≤ak ≤rk ≤sk.For rk =1,...,sk−1,
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and for rk= sk,
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This is the nonignorable selection model (i.e., the model that 
accommodates the ascertainment bias). In Appendix A, we also show 
that

1

2 2
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Note that when sk=1under ascertainment bias ak=rk =1 with 
probability one; so all families with exactly one sibling are excluded 
from the analysis.

For comparison, we briefly describe the ignorable selection model. 
Essentially this is the model without the normalization constant in (ak, 
rk|p, π, θ) (i.e.,0≤ak≤rk≤sk). It is useful to separate the probability mass 
function of (ak,rk) into the following four parts. For 0≤ak ≤rk ≤1,

( , | , , , , 1) (1 ) (1 ) ,k k k k kr r a r a
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where ak = 0, . . . , rk .

Posterior inference 

We use the same assumption as in the original model that (ak,rk) 
are independent over families (k=1, . . . ,n), and we assume that 

, , ~ Uniform(0,1)iidp π θ Then, using Bayes’ theorem, the joint posterior 
density of (p, π, θ) is
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For the ignorable selection model, the joint posterior density is
1
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Note that in (8) there is no term with ak=rk=0 because they are 
simply not in the data of ascertained families.

To make posterior inference about (p, π, θ), we use a grid method 
in three dimensions in a manner similar to the one discussed earlier 
for (p, π). With 100 intervals in each variable, we have to evaluate the 
joint posterior density at 106 values of (p, π, θ), not too time-consuming 
though. It is unnecessarily complex to run a Gibbs sampler here. 
Because each of p, π and θ lives in (0, 1), the grid procedure is still 
attractive. Note that for the ignorable selection model, a posteriori p 
and θ are jointly independent of π. In fact, 

~~ 1 1
| , ~ Beta{1 ,1 ( )}

n n

k k kk k
a r a r aπ

= =
+ Σ + Σ −
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1
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Thus, we use a grid to draw (p, π), and we draw π independently. In 
either case, we have used 10, 000 iterations, perhaps too many!

In Table 2 we have compared the ignorable and the nonignorable 
selection models for Crow’s data when inference is made for p, π and 
θ. The correlation is almost zero under both the ignorable and the 
nonignorable selection models, but the difference between these models 
for inference about p and π is enormous with much larger estimates 
from the ignorable selection model. Under the nonignorable selection 
model, the posterior mean, posterior standard deviation and 95% 
credible interval for p are .257, .033, (.190, .320). This small correlation 
seems to have some effect: the posterior mean, posterior standard 
deviations, the 95% credible interval without the familial correlation 
are .271, .035 and (.206, .340). 

It is worth noting that we have repeated the computations with 1,000 
iterations instead of 10,000. The posterior means, standard deviations 
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and 95% credible intervals are approximately the same to three decimal 
places. Of course, the numerical standard errors are increased by a 
factor of 10 but they are still small. Thus, we can do the computations 
with 1,000 iterations, and perhaps fewer. This is important for the 
simulations we do next.

Simulation study

The purpose of the simulation study is to investigate the effects of 
the familial correlation and the disparity between the ignorable and 
the nonignorable selection models. We have generated data from the 
nonignorable selection model, and we have fit both the ignorable and 
the nonignorable selection models. Here we use a single π and a single 
θ. We have taken p = .257, π = .371 and n = 100 to obtain data similar 
to Crow’s data. To study the effect of the familial correlation, we have 
taken θ = .02, a small value and θ = .20, a larger value.

We have generated 1000 data sets from the nonignorable selection 
model. From Crow’s data, we have obtained the distribution of the ten 
family sizes 1, 2, . . . , 10. The frequencies of the family sizes are 9, 24, 16, 
13, 9, 2, 4, 1, 1, 1. Thus, using the table method, we draw 100 family sizes 
for each of the 1000 simulated data sets. Now, noting that

p(ak,rk|p, π, θ)=p(ak|rk, π)p(rk|p, π, θ),

We use the composition method to draw rk from p(rk | p, π, θ), and 
with this value of rk, we draw ak from p(ak|rk, θ), where p(rk|p, π, θ) is 
given in (A.2) of Appendix A, and

( )

(1 )
( | , ) , 1,..., ,

1 1

k k k

k

k a r a

k
k k k kr

r
a

p a r a r
π π

π
π

− 
− 

 = =
−

a truncated binomial distribution. It is easy to draw ak using a rejection 
method: draw ak ~Binomial (rk, π), and take ak whenever it is not 0. We 
repeat this process for all 100 families.

We have used 1000 iterates to fit each model to the 1000 data sets. 
For each data set we have computed (a) the posterior mean, posterior 
standard deviation and the width of the 95% credible interval of each 
parameter; (b) the probability content of each interval by calculating 
the proportion of intervals containing the true value of each of the 
three parameters; and (c) the bias and the mean squared error. In (c) 
we calculated Abias, which is the average over the 1000 simulations of 
the absolute deviations of the posterior mean from the true value, and 
APMSE, which is the average over the 1000 simulations of the square of 

the deviations of the posterior mean from the true value plus posterior 
variance. We have also presented standard errors of the quantities in 
(a), (b) and (c).

In Table 3 we present the results for the simulation study. We 
consider each measure in turn. The posterior means are in order under 
the nonignorable selection model, but not under the ignorable selection 
model; the estimates for p and π are too large (relative to the true values) 
as the two examples show. The posterior standard deviations are smaller 
under the ignorable selection model, more than 100% smaller in some 
cases. This also makes the 95% credible interval much shorter under 
the ignorable selection model. The probability contents of the 95% 
credible intervals are not much smaller than the nominal value under 
the nonignorable selection model; under the ignorable selection model 
they are virtually 0 except at θ = .02, where it is really too large. The 
Abias and APMSE are much smaller under the nonignorable selection 
model. 

Therefore, the ignorable selection model gives badly inaccurate 
estimates with artificially high precision. Under the nonignorable 
selection model the point and interval estimates are acceptable, but not 
those for the ignorable selection model. In fact, Abias and APMSE favor 
the nonignorable selection model. There is some effect of the intra-class 
correlation.

Heterogeneous Probabilities and Correlations 
We generalize the discussion in this paper by considering 

heterogeneous proband probabilities and familial correlations. 
Specifically, in heterogeneous proband probabilities section, we 
consider the case in which there are different proband probabilities, and 
in heterogeneous familial correlations section, we consider the case in 
which there are different familial correlations.

Heterogeneous proband probabilities

Then, with this simple adjustment the likelihood function for the 
n families is
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A priori we assume that 1,  ,..., ~iiddp π π Uniform(0,1). Then, the joint 
posterior density for (p, π) is

~~ ~ 1, 1
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0 < p, π1,..., πd< 1. To make posterior inference about (p, π), it is 
more convenient to use the griddy Gibbs sampler [22].  

The griddy Gibbs sampler is performed as follows. We obtain the 
conditional posterior distribution of each parameter in turn. For p, the 
conditional posterior density is

1 ~~ ~ 1, 1

(1 )( , | , ) .
1 (1 )

k k k

kk
k

r s r

sk s
r

p pg p a r
p

π
π

−

= >

−
∝ Π

− −
               (11)

Now, given p, a and r, π t, t = 1, . . . , d, are independent with

Note: Parameters:  p - segregation ratio; π - proband probability; θ - familial cor-
relation.
Table 2: Comparison of ignorable (IG) and nonignorable (NIG) selection models 
by data set and parameters using the posterior mean (PM), posterior standard 
deviation (PSD), numerical standard error (NSE) and 95% credible interval for 
Crow’s data.

Here we allow the proband probabilities to vary with the number of 
affected siblings within each family. Crow’s data have four values (1, 2, 
3, 4) for the number affected. So for Crow’s data there are four different 
parameters (π1,..., π4). Thus, generally let πrk denote the proband 
probabilities, and d be the number of distinct proband probabilities 
(π1,..., πd).

PM PSD NSE Interval
Correlationis 0.
NIG      p .271 .034 .0003 (.206, .340)

π .364 .078 .0008 (.217, .521)
IG        p .460 .030 .0003 (.399,.518)

π .726 .040 .0004 (.647,.801)
Correlationis θ.
NIG      p .257 .033 .0003 (.190, .320)

π .371 .079 .0008 (.217, .520) 
θ .026 .024 .0002 (.000, .074)

IG        p .446 .030 .0003 (.390, .506)
π .723 .040 .0004 (.643, .799)
θ .015 .014 .0001 (.000, .044)
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Using a grid, we draw a random variate from (11), and with this 
value of p we have drawn independently the d remaining parameters 
from (12). Actually, we started with p = .35, and we drew from (12) 
first and (11) second; this is useful because we only need to specify one 
starting value of p. Again, we use 100 grid intervals for each conditional. 
Conservatively, we “burn in” 1000 iterates, and we use the next 10,000 
values to make posterior inference about . The griddy Gibbs sampler 
settles down very quickly, and there are virtuallyno auto correlations 
in the iterates. We use these iterates to do inference as in the standard 
Monte Carlo procedure.

For Crow’s data, the posterior mean, posterior standard deviation 
and 95% credible interval for p are .294, .036, (.229, .369); the numerical 
standard error is .00035. Here, the hypothesis of an autosomal recessive 
is not in dispute, but we note that the 95% credible interval moves over a 
little to the right. Compare the posterior mean of p of .268 with a single 
proband probability versus .294 with five proband probabilities. In table 
4 we present posterior inference about the proband probabilities. We 
can see that the parameters are different, and there are for all practical 
purposes only two distinct values of π (i.e., when variability is taken 
into consideration, the last three proband parameters may be taken 
to be equal). Thus, we repeat the computations with just two distinct 
values of π. Now, the posterior mean, posterior standard deviation and 
95% credible interval for p are .293, .037, (.221, .361); the numerical 
standard error is .00039. The 95% credible intervals for the two values 
of π are (.732, 1.000) and (.181, .457). Again posterior inference about 
p does not seem to be sensitive to the number of π’s used, when more 
than one proband probability is used. 

In Figure 1 we have presented the empirical distributions of p under 
the three scenarios. The empirical posterior density of p is different from 
the posterior densities of p corresponding to five proband probabilities 
and the five proband probabilities collapsed into just two distinct 
proband probabilities; these latter two empirical posterior densities are 
similar.

Heterogeneous familial correlations

Thus, the intra-class correlations are θ sk, k = 1, . . . , n. For Crow’s data 
there are 10 different family sizes, so there are 10 distinct correlation 
parameters θ1,..., θ10 . In general, we assume that there are g parameters. 
Note that for a one-sibling family, θ1

≡0. Again, we take 2,  , ,..., ~iidgp π θ θ

uniform (0, 1). Then, the joint posterior density is
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                 (13)

0 <p, π, θ2,..., θg < 1.

Again, we use the griddy Gibbs sampler [22] to perform the 
computation. We performgrids on each of the conditional posterior 
densities which do not have simple forms as can be easily seen from 
(13). [Looking at (13) the three conditional posterior densities,

~ ~~ ~ ~ ~ ( ,| , , , ),  ( | , , , )p p a r p p a rπ θ π θ  and ~~ ~( | , , , )p p a rθ π  can be easily written 
down]. We “burn in”1000 iterates, and we use the next 10,000 to 
make posterior inference. The autocorrelationswere negligible for all 
parameters, and there were fast convergence as is evident in the quick 
settling down of the trace plots.

In Table 5 we present results corresponding to different intra-class 
correlations. With nine intra-class correlations, the posterior mean, 
posterior standard deviation and the 95%credible intervals of p are 
.259, .033 and (.200, .329). The credible interval moves over a little to 
the left. The nine intra-class correlations are all small, but partitioning 
according to the intra-class correlations, one can see two groups with 
sibship sizes 2, 8, 10 and the other with sibship sizes 3, 4, 5, 6, 7, 9. 
So we collapsed the nine different correlations to two distinct ones. As 
expected, there are some changes in the standard errors and intervals, 
but these are small.

Conclusion
Concluding remarks

When one wants to find out about the proportion of people with a 
rare disease, one cannot take a random sample from the population. It 
is convenient to take a random sample of the cases that appear. Thus, 
clearly this sample is biased (i.e., there is a selection bias). An important 
example in genetics occurs when one is interested in the segregation 
ratio for a rare recessive disease. This problem exists over a century, 
and there are many solutions depending on the sampling scheme. The 
Bayesian solutions have some merit though.

We have considered the problem of estimating the segregation 
parameters and the proband probabilities when there is an autosomal 
recessive disease. We make three useful contributions which are (a) 
we provide a full Bayesian analogue to the available non-Bayesian 
solutions; (b) we extend the methodology to reflect an intra-correlation 
within family; (c) we discuss the cases when there are heterogeneous 
proband probabilities and familial correlations. The computation in (a) 
and (b) is easy because we can use Monte Carlo methods with only 
random samples. However, in (c) we used the griddy Gibbs sampler.

The nonignorable (NIG) selection model holds, and the ignorable (IG) selection model is fit. PM, PSD and W are the posterior mean, posterior standard deviation and width 
of the 95% credible interval averaged over the 1000 simulations; C is the probability content of 95% credible interval, Abias is the average over the 1000 simulations of the 
absolute deviations of the estimate from the true value. APMSE is the average over the1000 simulations of the square of the deviations of the posterior mean from the true 
value plus posterior variance. Here the notation ab means that a is the average and b is the standard error. True p = .257, true π =.371 and true θ = .02,  .20.

Table 3: Simulation study to compare posterior means, posterior standard deviations and 95% credible intervals of the parameters p, ?and ? by model and the true value of ?

We now allow the intra-class correlation to vary with family size s . 

θ Model Par PM PSD W C Abias APMSE
.02 NIG p .254.0011 .030.0001 .116.0003 .924.0084 .027.0006 .002.0001

π .379.0023 .066.0002 .254.0007 .911.0090 .059.0014 .010.0002
θ .049.0008 .032.0003 .107.0012 .950.0069 .029.0008 .003.0001

IG p .441.0008 .026.0000 .101.0001 .000.0000 .184.0008 .035.0003
π .709.0011 .035.0000 .137.0002 .000.0000 .338.0011 .117.0007
θ .017.0002 .015.0001 .045.0003 1.000.0000 .005.0001 .000.0000

.20 NIG p .259.0012 .034.0001 .129.0003 .917.0087 .029.0007 .003.0001
π .373.0019 .055.0001 .213.0006 .905.0093 .049.0012 .007.0002
θ .206.0019 .055.0002 .210.0006 .924.0084 .048.0011 .007.0001

IG p .489.0010 .029.0000 .110.0002 .000.0000 .232.0010 .056.0005
π .648.0012 .035.0000 .134.0001 .000.0000 .277.0012 .080.0006
θ .061.0009 .035.0003 .121.0011 .064.0077 .139.0009 .021.0002
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In this paper we have not reported on the ascertainment bias that 
occurs in single nucleotide polymorphism (SNP) discovery. This is an 
enormously important problem with implications for the study of many 
genetic disorders. Our work on rare autosomal recessive disorders is a 
preamble to the study of ascertainment bias in SNP discovery. However, 
we give a brief description.

Ascertainment bias in SNP discovery

nucleotide throughout the population by using allele frequency. Other 
measures that are potentially more useful are heterozygosity (H) and the 
polymorphism information content (PIC) [23]. For s individuals in the 

ith nucleotide, let di denote either H or PIC at the ith nucleotide. Then,   

Note: In (b) there are four distinct parameters for πk, k = 1, . . . , 4 and in (c) there 
are two distinct parameters with π2, π3 and π4 collapsed into a single parameter, π2.

Table 4: Posterior mean (PM), posterior standard deviation (PSD), numerical stan-
dard error (NSE) and 95% credible interval for the segregation parameter and the 
proband probabilities for Crow’s data.

PM PSD NSE Interval
a. Single Familial Correlation
p .257 .033 .0003 (.190, .320)
π .371 .079 .0008 (.217, .520)
θ .026 .024 .0002 (.000, .074)
b. No collapsing
p .259 .033 .0003 (.200, .329)
π .372 .079 .0008 (.221, .527)
θ

2 .006 .005 .0001 (.000, .010)
θ3 .027 .016 .0002 (.010, .058)
θ4 .029 .018 .0002 (.010, .065) 
θ5 .030 .020 .0002 (.010, .069)
θ6 .032 .021 .0002 (.010, .074)
θ7 .034 .023 .0002 (.010, .079)
θ8 .020 .022 .0002 (.000, .065)
θ9 .037 .026 .0002 (.010, .090)
θ10 .028 .027 .0002 (.000, .084)
c. Collapsing
p .258 .033 .0004 (.193, .321)
π .372 .078 .0008 (.221, .524)
θ2 .020 .019 .0002 (.000, .058)
θ3 .027 .017 .0002 (.010, .064)

Note: Crow’s data set has sibship sizes 1 - 10, and there are nine distinct correla-
tion parameters, θk, k=2,...,10; θ1≡0. In(c) the parameters θ1, θ8, θ10 are collapsed 
into θ2,and the parameters θ3,..., θ7, θ9 are collapsed into θ3.
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 for PIC. [Note that the 

number of individuals at eachnucleotide is the same fixed number s, and 
there are 2s zeros and ones.] Then, analogous to probability proportion 
to size in survey sampling, one can take πi∝di, i = 1, . . . , N, for the N 
nucleotides with n sampled. Here, it is not really the individuals that are 
sampled, but n nucleotides are ascertained out of N ≈ 106. Now, letting 

selected, then under Poisson (Bernoulli) sampling,

1
~ ~

1

( | ) (1 ) ,i i

N
I I
i i

i

P I c π π −

=

= −∏
                                                            (14)

where the proband probabilities are πi=
ind

Nd
, where 

N
i

i=1

dd=
N∑ . Note that the 

di are observed for the nucleotides in the panel. In Poisson sampling the 
assumption (14) is reasonable. Then, a reasonable assumption is

Both assumptions (14) and (15) are the basis of a model for SNP 
discovery under ascertainment bias. All structures and quantities of 
interest can be added as are needed. Different correlation structures 
among the nucleotides can be specified. The important disease-causing 
genes can be assessed, and more accurate results from case-control 
studies, used in SNP discovery, can be obtained. 
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