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INLA and Approximate Bayesian Inference
Structured additive regression models have been extensively used 

in many fields, such as medicine, public health, and economics. In these 
models, the response variable yi is assumed to belong to an exponential 
family and its mean µi  is linked to a structured additive predictorηi    
through a link function ( ) ,⋅g  where
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s,  ( ) '⋅lf s are unknown functions of the covariates 'µl s, and ε  is 
unstructured error term. In Bayesian statistics, the common solution to 
obtain estimates for the models is the use of Markov chain Monte Carlo 
(MCMC) techniques. Although it is always possible to implement them 
in theory, MCMC methods could come with a wide range of issues in
practice: parameter samples could be highly correlated, computational
time is very long, and estimates may content large Monte Carlo errors,
etc.

Approximate Bayesian inference using integrated nested Laplace 
approximations (INLA) is a recently proposed method for solving 
the structured additive regression models where the latent field of the 
models is Gaussian [1]. The methodology is particularly useful, when 
the latent Gaussian model is a Gaussian Markov random field (GMRF) 
with precision matrix G controlled by a few hyperparameters. Denote 
that β  is the vector of all unknown regression parameters in the 
structured additive predictor (1), assigned Gaussian priors; ξ  is the
vector of hyperparameters for which non-Gaussian priors are assigned 
in the model. In a Bayesian framework, one is to estimate the marginal 
posterior density

( , ) ( , ) ( , ) ( ) .π β π β ξ ξ π β ξ π ξ ξ= =∫ ∫j j jy y d y y d 	                   (2)

given data y for each component β j  of the Gaussian vector  β . The 

key of INLA is to construct a nested approximation of (2). First, the 
marginal posterior ( )π ξ y  is approximated using
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where ( , )π β ξ y  is the Gaussian approximation to the full conditional 
distribution of β  evaluated in the mode *( )β ξ  for a given ξ . Then, 
one computes ( , ),π β ξ j y  an approximation of the posterior ( , ).π β ξj y  
Rue et al. [1] suggested three approximation approaches: a Gaussian 
approximation, a full Laplace approximation, and a simplified Laplace 
approximation. Lastly, INLA approach combines the previous two 
steps with a numerical integration to reach the goal. The approximate 
posterior of ( )π β j y  is obtained by	

( ) ( , ) ( ) ,π β π β ξ π ξ= ∆∑  j j q q q
q

y y y

where the sum is over values of ξ  with area weights ∆q .

INLA method provides accurate approximations to the posterior 
marginals of the latent variables which are extremely fast to compute. No 
samples of the posterior marginal distributions need to be drawn using 
INLA, so it is a computationally convenient alternative to MCMC. All 
computations required by the INLA methodology have been efficiently 
implemented by a R package INLA (available on www.r-inla.org). It 
integrates GMRFLib, a C-based library for fast and exact simulation 
of GMRF.

Rue et al. [1] demonstrated that INLA can be applied to solve a 
variety of popular statistical models, which includes generalized linear 
mixed models, stochastic volatility models, spatial disease mapping, and 
Log-Gaussian Cox processes. In this paper, we show that two classical 
nonparametric smoothing problems, nonparametric regression 
and probability density estimation, can be achieved by using INLA. 
Simulated examples and R functions are demonstrated to illustrate the 
use of the methods. The future research on the applications of INLA to 
other complex statistical models is discussed in the paper.
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Abstract
Integrated nested Laplace approximations (INLA) are a recently proposed approximate Bayesian approach to 

fit structured additive regression models with latent Gaussian field. INLA method, as an alternative to Markov chain 
Monte Carlo techniques, provides accurate approximations to estimate posterior marginals and avoid time-consuming 
sampling. We show here that two classical nonparametric smoothing problems, nonparametric regression and density 
estimation, can be achieved using INLA. Simulated examples and R functions are demonstrated to illustrate the use of 
the methods. Some discussions on potential applications of INLA are made in the paper.

Here 0α  is the intercept, αk ’s are the linear effects of covariates 'kx
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Nonparametric Regression Using INLA
Nonparametric regression is a classical problem in statistics, 

which does not require to specify a parametric functional form for the 
relationship between the response y and the predictor x. We assume a 
model of the form

( ) ,ε= +i i iy m x          1,..., ,=i n

where ( )⋅m  is an unknown smooth function and the errors ε i ’s are 
assumed to be independent and identically distributed as 2(0, ).σN   

There are several popular techniques to estimate nonparametric 
regression models, such as, local polynomial regression methods [2], 
and smoothing spline approaches [3]. Here we examine the use of 
spline techniques. Smoothing spline is motivated by considering the 
penalized residual sum of squares as a criterion for the goodness of fit 
of ( )m x   to the data. It minimizes

2 2
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where λ  is a smoothing parameter to control the trade-off between 

fit and the penalty  2( )′′∫m x dx . The solution to this minimization 

problem is a natural cubic spline with knots at the distinct observed 
values of  Xi.

Wahba [4] showed that the smoothing spline is equivalent to 
Bayesian estimation with a partially improper prior. m(x) has the prior 
distribution which is the same as the distribution of the stochastic 
process

1/2
0 1( ) ( ),θ θ= + +Z x x b V x

where 2
0 1, (0, ), /θ θ ς σ λ= N b  is fixed, and V(x) is the one-fold 

integrated Wiener process,

0
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V x x t dW t 				     

Thus, estimating m(x) becomes to seek the solution to the stochastic 
differential equation

2
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as a prior over  m. Note that such a differential equation of order two is 
the continuous-time version of a second-order random walk. However, 
the solution of (3) does not have any Markov properties. The precision 
matrix is dense, hence it is computationally intensive. Lindgren and 
Rue [5] suggested a Galerkin approximation to m(x), as the solution 
of (3). To be specific, let 1 2< < < nx x x  be the set of (unequal-spaced) 
fixed points, a finite element representation of  m(x) is constructed as

1
( ) ( ) ,ψ

=

=∑

n

i i
i

m x x w 				     

for the piecewise linear basis functions  ψ i ’s and random weights wi’s.

In order to estimate the smooth function m(x), one needs to 
determine the joint distribution of the weights 1( ,...., )= T

nw w w . 
Using the Galerkin method, w is derived as a GMRF with mean zero 
and precision matrix G. Let 1+= −i i id x x   for 1,..., 1= −i n  and  

1 0 1 .− += = = = ∞n nd d d d

The ×n n  symmetric matrix G is defined as
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where the non-zero elements of row i are given by
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with , 1 1,+ +≡i i i ig g  and , 2 2,+ +≡i i i ig g   due to symmetry. G is a sparse 

matrix with rank 2−n , making the model computationally effective.

If we assign m  as a smoothness prior over m, the cubic smoothing 
spline ˆ ( )m x  at x coincides with the posterior expectation of m(x)  
give the data, i.e. ˆ ( ) ( ( ) ).≈m x E m x y  Therefore, the nonparametric 
regression problem becomes to fit a latent Gaussian model. It can be 
accomplished using INLA since w is a GMRF. The implementation 
of the method needs some extra programming in R to define a user-
specified GMRF. A R function called npr.INLA is listed in Appendix. 
The following simple code is to call the fit using INLA, where “x” and “y” 
are inputs of numeric vector of predictors and responses, respectively.

R> library (INLA)

R> library (splines)

R> fit1<-npr.INLA (x,y)

The outputs of npr.INLA include a vector of sorted x values at 
which the estimate is computed, a vector of smoothed estimates for the 
regression at the corresponding  x, and two vectors of the corresponding 
2.5% and 97.5% credible bands for the regression.

We now show two simulated examples to compare the INLA 
approach and the conventional cubic smoothing spline regression. 
Generalized cross-validation method is applied to select the smoothing 
parameters for smoothing splines. The Bayesian method takes the 
advantage that the smoothing parameter is automatically determined 
by the model fitting without any user input. In the first example, 

2( ) 3sin(2.5 ) 2exp( 5 ),= + −m x x x  (0,1.5),x U  and 2(0,0.5 )ε  N  with 
sample size n=50. In the second example, 2/5( ) 3 cos( ),π= −m x x x  

( 3.0,0),−x U  and 2(0,0.8 )ε  N  with sample size n=100. Figure 1 
shows the estimation results. The estimates using INLA are denoted by 
the solid lines, and the corresponding 95% credible bands are denoted 
by the dashed lines. The estimates using the cubic smoothing spline 
regression are denoted by the dash-dotted lines. The true functions are 
denoted by the dotted lines. Unsurprisingly, the estimates using INLA 
are almost identical to those using cubic smoothing spline. The 95% 
credible bands from the INLA fits completely cover the true functions 
in these two examples. Approximate Bayesian inference through INLA 
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allows fast Bayesian computation and makes it possible to perform 
analysis in an automatic way.

Density Estimation Using INLA
Nonparametric density estimation can be also implemented using 

INLA. Brown et al. [6] proposed a “root-unroot” density estimation 
procedure, which turned density estimation into a nonparametric 
regression problem. The regression problem was created by binning 
the original observations into suitable size of bins and applying a 
mean-matching variance stabilizing root transform to the binned 
data counts. Then, a wavelet block thresholding regression was used 
to obtain the density estimate. Here we adopt Brown et al. [6]’s root-
unroot procedure but use a second-order random walk model with 
INLA for the regression step. The second-order random walk model 
is particularly suitable for an equi-spaced nonparametric time series 
regression problem [7]. In addition, there are two advantages to use 
the Bayesian nonparametric approach. First, we avoid the smoothing 

parameter selection, where the smoothness of curve is automatically 
determined by the Bayesian model fitting. Second, it is straightforward 
to construct credible bounds of a regression curve from INLA output. 
As a result, constructing credible bands for the probability density 
function becomes a natural by-product in the density estimation. Let   

1{ ,..., }nX X  be a random sample from a distribution with the density 
function fx. The estimation algorithm is summarized as follows.

1. Poissonization. Divide 1{ ,..., }nX X  in T equal length intervals. 
Let 

1,..., TC C  be the count of observations in each of the intervals.

2. Root Transformation. Apply the mean-matching variance 
stabilizing root transform, 1/ 4, 1,..., .= + =j jY C j T

3. Bayesian Smoothing with INLA. Consider the time series 
1( ,..., )= TY Y Y  to be the sum , 1,...,ε= + =j j jY m j T  of a smooth trend 

function m and a noise component . Fit a second-order random walk 
model with INLA for the equi-spaced time series to obtain an posterior 

(a) (b)

Figure 1: Simulated examples for nonparametric regression: (a) ( ) 3sin(2.5 ) 2exp( 5 ),= + −m x x x  50, 0.5;σ= =n  2/5(b) ( ) cos( ),π= −m x x x  100, 0.8.σ= =n   
The estimates (solid lines) with credible bands (dashed lines) using INLA are compared to the estimates (dash-dotted lines) using cubic smoothing spline 
regression. The true functions are denoted by the dotted lines.

                                                 
 

(a)                                                                                             (b)

Figure 2: Simulated examples for density estimation: (a) (0,1), 500;=X N n  2(b) 0.5 ( 1.5,1) 0.5 (2.5,0.75 ), 1000− + =X N N n . The estimates (solid lines) using 
INLA are compared to the estimates (dash-dotted lines) using kernel density estimation with Sheather and Jones [8]’s plug-in bandwidth. The true functions 
are denoted by the dotted lines.
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mean estimate m̂ of  m , and / 2α   and 1 / 2α−  quantiles, /2ˆαm  and  
1 /2ˆ .α−m  

4. Unroot Transformation and Normalization. The density function    
fx is estimated by

2ˆ ˆ( ) [ ( )] ,γ=Xf x m x
and the 100(1 )%α−  credible bands of  f(x) is

2 2
/2 1 /2ˆ ˆ( [ ( )] , [ ( )] )α αγ γ −m x m x

where 1ˆ( )γ −= ∫ Xf dx  is a normalization constant.

The R function, density.INLA in Appendix implements the above 
root-unroot algorithm. The following code is to call the density fit using 
INLA, where “x” is a numeric vector of data values, “m” is the number 
of equally spaced points at which the density is to be estimated, “from” 
and “to” are the left and right-most points of the grid at which the 
density is to be estimated. If “from” and “to” are missing, “from” equals 
to the minima of the data values minus “cut” times the range of the data 
values and “to” equals to the maxima of the data values plus “cut” times 
the range of the data values.

R> library (INLA)

R> fit1 <-density.INLA (x, m=101, from=min (x), to=max (x), cut=0.1)

Figure 2 shows the two simulated examples to compare INLA 
method and conventional kernel density estimation. In the first 
example data were generated from the standard normal distribution,   

(0,1),X N with sample size n=500; In the second example data were 
generated from a normal mixture model, 20.5 ( 1.5,1) 0.5 (2.5,0.75 ),− +X N N
with sample size n=1000. In the figure, the estimates using INLA are 
denoted by the solid lines, and the 95% credible bands are denoted 
by the dashed lines. The kernel density estimates with Sheather and 
Jones [8]’s plug-in bandwidth are denoted by the dash-dotted lines. 
The true functions are denoted by the dotted lines. We note that the 
INLA estimates are very close to the kernel density estimates. The 
INLA approach allows us to compute the credible bands of the density 
function without additional computational efforts.

Discussion
MCMC techniques were commonly choices to fit structured 

additive regression models, however they may often suffer the issues of 
convergence and computational time. INLA approach provides a novel 
approximate Bayesian inference method to fit a large class of structured 
additive models with latent Gaussian field. It, as an alternative to MCMC, 
provides accurate approximations to estimate posterior marginals and 
avoid time-consuming sampling. INLA method has been implemented 
in C and a R-interfaced package is available under Linux, Windows and 
Macintosh. The package provides a user-friendly interface and makes 
latent Gaussian models applicable in a general way.

We have shown that two classical nonparametric models can 
be fit through the approximate Bayesian inferential procedure. 
Nonparametric regression is treated within a general second-order 
random walk model by assigning appropriate GMRF priors. Density 
estimation is transformed to an equally-spaced nonparametric Bayesian 
time series regression problem by adapting Brown et al. [6]’s root-unroot 
algorithm. The approximate Bayesian inference of the nonparametric 
models enjoys the advantage of fast computation, automatic selection of 

smoothing parameter and construction of credible bands.

Recently, Lindgren et al. [9] have addressed the explicit link 
between Gaussian fields and Gaussian Markov random fields through 
the stochastic partial differential equation approach. INLA approach 
has been applied to a variety of complex models, such as spatial-
temporal disease mapping [10], additive mixed quantile regression 
models [11], and beta semiparametric mixed models [12]. INLA, as 
new Bayesian computation tools, have a great potential to be used in 
many scientific fields. There are many open problems of applying INLA 
to advanced statistical models. For instance, it would be of interest to 
use INLA for joint modeling of longitudinal and time-to-event data, 
functional data analysis, measurement error models, and sparse ultra-
high-dimensional modeling. Such problems need further investigation 
and should be detailed in the future.

Appendix: R Functions
We present here the key compute code to call INLA for 

nonparametric regression and density estimation. Simulation examples 
and code files can be obtained from the journal’s webpage or http://filer.
case.edu/xxw17/Software/npINLA/.

## Nonparametric regression using INLA

npr.INLA <- function(x, y, diagonal = 1e-03, constr = T, ...){

      if (any(is.na(x))) stop(“’x’ contains missing values!”)

      if (any(is.na(y))) stop(“’y’ contains missing values!”)

      if (length(x) != length(y)) stop(“’x’ and ‘y’ have different lengths!”)      

      y <- y[order(x)]

      x <- sort(x)

      B <- bs(x, degree = 1, intercept = TRUE)

      idx <- 1:length(x)

      Q <- Gmatrix(x)

      inla.fit <- inla(y ~ B.1 + B.2 + f(idx, model = “generic0”, Cmatrix 
= Q, 

            diagonal = diagonal, constr = constr, ...) - 1, 

            data = as.data.frame(list(y = y, idx = idx, B = B)), 

            control.predictor = list(compute = T))

      return(structure(list(x = x, y = inla.fit$summary.linear.
predictor[,1], 

            y.lower = inla.fit$summary.linear.predictor[,3], 

            y.upper = inla.fit$summary.linear.predictor[,5])))      

}

## Density estimation using INLA

density.INLA <- function(x, m = 101, from, to, cut = 0.1, 

                              diagonal = 1e-03, constr = T, ...){

      if (any(is.na(x))) stop(“’x’ contains missing values!”)
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      if (missing(from)) from <- min(x) - cut * diff(range(x))

      if (missing(to)) to <- max(x) + cut * diff(range(x))

      bins=seq(from, to, length.out = m)

x.bins <- hist(x, breaks = bins, plot=FALSE)

x.bins.root <- sqrt(x.bins$counts+1/4)

idx <- 1:length(x.bins.root)

Q <- Gmatrix(idx)

inla.fit <- inla(x.bins.root ~ f(idx, model = “generic0”, Cmatrix
= Q, 

            diagonal = diagonal, constr = constr), 

            data = as.data.frame(list(x.bins.root = x.bins.root, idx = idx)), 

            control.predictor = list(compute = T))

      inla.est <- inla.fit$summary.linear.predictor[,1]

      inla.lower <- inla.fit$summary.linear.predictor[,3]

      inla.upper <- inla.fit$summary.linear.predictor[,5]

      SimpsonInt <- function (x, f, subdivisions = 256){

           ap <- approx(x, f, n = 2 * subdivisions + 1)

           integral <- diff(ap$x)[1] * (ap$y[2 * (1:subdivisions) - 1] 

+ 4 * ap$y[2 * (1:subdivisions)] + ap$y[2 * (1:subdivisions) 
+ 1])/3

           return(sum(integral))

            }

      normalized <- SimpsonInt(x.bins$mids, inla.est^2)

      f <- inla.est^2/normalized

f.lower <- inla.lower^2/normalized

f.upper <- inla.upper^2/normalized

return(structure(list(x = x.bins$mids, y = f, y.lower= f.lower,
y.upper=f.upper)))

}

## Function to compute G matrix

Gmatrix <- function(x, sparse = TRUE){

      if (any(is.na(x))) stop(“’x’ contains missing values!”)

      x <- sort(x)

      n <- length(x)

      d <- diff(x)

      d <- c(Inf, Inf, d, Inf, Inf)

      k <- 3:(n + 2)

      g <- (2/((d[k - 1]^2) * (d[k - 2] + d[k - 1])) 

+ 2/(d[k - 1]*d[k]) * (1/d[k - 1] + 1/d[k])

+ 2/((d[k]^2) * (d[k] + d[k + 1])))

      k <- 4:(n + 2)

      g1 <- -2/(d[k - 1]^2) * (1/d[k - 2] + 1/d[k])

      k <- 5:(n + 2)

      g2 <- 2/(d[k - 2] * d[k - 1] * (d[k - 2]+d[k - 1]))

      G <- diag(g)

      G[row(G) == col(G) + 1] <- g1

      G[col(G) == row(G) + 1] <- g1

      G[row(G) == col(G) + 2] <- g2

      G[col(G) == row(G) + 2] <- g2

      if (sparse == TRUE) G <- as(G, “dgTMatrix”)

      return(G)

}
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