alexa Structural Elucidation and Antioxidant Activity of a Polysaccharide from Mycelia Fermentation of Hirsutella sinensis Isolated from Ophiocordyceps sinensis

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Structural Elucidation and Antioxidant Activity of a Polysaccharide from Mycelia Fermentation of Hirsutella sinensis Isolated from Ophiocordyceps sinensis

The structure and antioxidant activity of a polysaccharide from mycelia fermentation of Hirsutella sinensis were analyzed. The natural active component water-soluble polysaccharides was isolated from mycelia, and three polysaccharide fractions HSP-1, HSP-2, and HSP-3 were purified with chromatography and the structures were identified. The structural characteristics determination with a combination of chemical and instrumental analysis methods showed that the mainly component HSP-1 was about 1.7×104 Da, and composed of glucose, mannose and galactose at a molar ratio of 4.5:1.0:1.4. Further researches revealed that HSP-1 was a branched polysaccharide possessing a backbone of (1→4)-α-D-glucose residues (~70%), (1→4)-α-D-mannose residues (~15%) and (1→4)-α-D-galactose residues (~15%). The branches were at the (1,2,4,6→)-α-D-glucose residues (~8%) of the backbone, mainly composed of (1→4)-α-D-glucose residues, (1→4)-α-D-galcatose residues, (1→4)-α-D-mannose residues, and terminated with α-D-galactose residues. The in vitro antioxidant assay proved HSP-1 possessed the hydroxyl radical-scavenging activity with an IC50 value of 0.834 mg/mL.

Citation: Liu JH, Wang ZJ, Wang Y, Chu J, Zhuang YP, et al. (2014) Structural Elucidation and Antioxidant Activity of a Polysaccharide from Mycelia Fermentation of Hirsutella sinensis Isolated from Ophiocordyceps sinensis. J Bioprocess Biotech 4:183 doi: 10.4172/2155-9821.1000183

  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger