Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Synthesis of Pyramid-Shaped NiO Nanostructures using Low-Temperature Composite- Hydroxide- Mediated Approach

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Synthesis of Pyramid-Shaped NiO Nanostructures using Low-Temperature Composite- Hydroxide- Mediated Approach

 Composite-hydroxide-mediated (CHM) approach was used to synthesize NiO nanocrystals. The proposed method makes use of molten composite hydroxides; providing reaction media and lower the process temperature. Processing temperature and reaction time are the two potential parameters to control the growth of a nanomaterial. The method was used at temperatures in the range of 180-250°C and formation of the nanomaterial was monitored using XRD, SEM, EDX, FTIR, and UV-visible spectroscopy. The produced nanomaterial was purely polycrystalline with an average crystallite size in the range of 23.71-36.92 nm. Method suggested formation of pyramid shaped NiO nanocrystals in the temperature range 220-250°C. Evidence on the elemental composition, purity, and chemical bonding were obtained from EDX and FTIR analysis respectively. Estimation on direct bandgap was made from the optical analysis and found to be in the range 4.0-4.8 eV. The method is attractive and seems a cost effective route for the growth of transition metal oxides for research purpose. For further efficacy, the approach can be examined for other technologically significant nanostructures. To know more

  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger
Top