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Introduction
Generation requires a successful reproduction in living organisms. 

In mature ovaries of female fish vitellogenesis is an important 
physiological process during which ova store yolk [1]. This process is 
started by gonadotropin hormones released from pituitary into the 
blood stream. The conversion of androgens into 17β- estradiol (E2) 
is accelerated by gonadotropins which then promotes the growth of 
granular cells of follicles and maturation of ovum [2]. Furthermore, 
in liver E2 stimulates the synthesis of vitellogenin protein (VTG), a 
precursor of yolk production in ovum [2,3]. The xenobiotics induced 
endocrine disorders may have destructive effects on health and survival 
of living animals, and in fish reproductive system, can be distinguished 
by several indices such as estradiol (E2) which is important in yolk 
production process [4].  Blood E2 level alterations can be related to 
the degree of environmental pollution [4] so that, pollutants lower E2 
level [5,6], inhibit plasma vitellogenin [6] and early vitellogenesis [5] 
and finally disturb sexual maturation [4]. These malfunctions may be 
attributed by the effects of pollutants on the hypothalamo- pituitary-
gonadal (HPG) axis [7].  

Polycyclic aromatic hydrocarbons (PAHs), as environmental 
pollutants, inhibits estrogen biosynthesis and inactivate estrogen 
receptors (ER), by aryl hydrocarbon receptors (AhRs) activation [8] and 
therefore may lead to estrogenic imbalance in target tissues [9]. AhR 
activation, on the other hand, alters the neurophysiological processes 
such as, syntheses and secretion of neurotransmitters in specific neural 
tissue [10]. Since in bonefish, gonadotropin secretion is control by 
aminergic pathways [11] therefore it seems that  neurotransmitters 
are sensitive to organic pollutants.  Naphthalene (NAP) is a simplest 
PAH compound. NAP and its methylated forms (alkyl naphthalene), 

as two hydrocarbon constituents of crude oil [12], considered as 
the most effective environmental pollutant [13] are very toxic for 
marine organisms [14]. During the sexual maturation, activation of 
neuroendocrine systems fluctuate the blood level of gonadotropins. 
Alternatively, gonadotropins secretion is under the control of  
serotonergic and dopaminergic pathways [15].  Despite of many reports 
which focused on the negative effects of PAHs on reproduction [9,16,17] 
the exact mechanism of the pollutant effects is not elucidated, so far 
The aim of the present research was to investigate the effects of NAP 
on the level of neurotransmitters engaged in HPG at previtellogenesis 
and early vitellogenesis stages in fish. Measuring of the levels of 
neurotransmitters in fish brain may lead to better understanding of 
physiological and behavioral complexities in encountering pollutant 
stress during reproduction.

Materials and Methods
The fish under study

During January 2012 some 160 healthy Liza klunzingeri female 
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neurotransmitters in different brain regions of female Klunzinger's mullet, at the previtellogenic and vitellogenic 
stages were examined. Studied neurotransmitters were noradrenalin (NA), serotonin (5-HT), dopamine (DA), and 
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fish, weighted 96.7 ± 2.77 g, were caught at Khowr-e-Musa Estuary, 
located at the northern littoral of Persian Gulf (Khuzestan, Iran) and 
transferred to the Marine Fish Research Center in Imam Khomeini 
Port. To adapt to normal light and temperature, they were kept in 300 
liter tanks for one week and fed for 1% of their body weight up to 24 
hours before sampling.

Experimental design

In the experiment, an injection and implant of a certain dose of 
pollutants was used. Dose selection was based upon the previous studies 
conducted to evaluate PAHs toxicological effects in which, after PAH 
injection, fish bile PAHs contents were similar to those that naturally 
exposed to PAH [18-21]. To study the short-term effect of NAP, 80 fish 
were divided into control and test groups (n=40). Under anesthesia 
(0.2% 2-phenoxyethanol), test fish were weighed and then injected (ip) 
50 mg/kg NAP soluble in 2 μl/g sunflower oil. The control fish were 
injected 2 μl/g sunflower oil. After 3 hours, the blood, brain, and gonads 
of all fish were sampled. In order to study the long-term effect of NAP, 
control and test groups (n=40) were anesthetized, weighed and then, 
in each fish, an amount of 50 mg/kg NAP soluble in 10 μl/g coconut oil 
was implanted (ip). The control fish were implanted 10 μl/g coconut oil, 
as the same manner. After 3 days, the blood, brain, and gonads of all 
fish were sampled.

Sampling procedure

In order to determine the plasma E2 level, fish anesthetized and 
their bloods were pulled out from caudal vein, using a heparinized 
syringe, centrifuged (6000 rpm for 7 minutes) and then plasma 
samples rapidly freeze in liquid nitrogen and kept at -80°C until use. 
Then all fish were decapitated and their brains dissected out. From the 
removed brains the pituitary, telencephalon (except olfactory lobe), 
pre-optic area (included optic tract) and hypothalamus [11,22] were 
separated, weighted and then rapidly freeze in liquid nitrogen and then 
kept at – 80°C until neurotransmitter measurements. To determine 
the previtellogenic and early vitellogenenic phases, the ovaries were 
also removed, fixed in Bouin’s solution and processed for histological 
preparation. The paraffin blocks were cut, stained (hematoxiline-eosin) 
[23] and examined under light microscope.

Plasma 17-β estradiol measurement

The plasma concentration of E2 was measured by ELISA technique 
[1,24]. 

Assessment of neurotransmitters levels

To measure the levels of dopamine, serotonin, noradrenalin, 
3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxy-3-
indoleacetic acid (5HIAA) Waters 2695 HPLC technique was used. The 
HPLC system was equipped with Waters 2465 Electrochemical Detector 
(Waters Associates). The procedure was as proposed by Míguez et al. 
and modified by Gesto et al.  

The HPLC liquid phase was prepared as a solution made up by 
63.9 mM NaH2PO4, 0.1 mM Na2EDTA (Sigma), 1.63 mM sodium 
1-octanosulfate (Merck), and 14.9% methanol (Merck). The solution
was filtrated and degasified before use.

In order to prepare tissue samples for HPLC, each sample was 
separately homogenized by an MSE 100 W ultrasonic homogenizer. 
Then, a volume of liquid phase solution equal to 0.1 ml for pituitary 
and 0.5 ml for hypothalamus, telencephalon, and the pre-optic area was 
added to the vial of the tissue, homogenized again, centrifuged at 16000 

rmp and the supernatant was separated. After that they were diluted 
by liquid phase solution (1:1 for telencephalon and pre-optic area and 
1:2 for hypothalamus, pituitary tissue did not diluted) [25-27]. Each 
injection volume was 30 μl, each sample run time was 15 minutes, 
each noise was 3, and the isocratic flow rate was 1.1 ml/min at room 
temperature.

Statistical analysis

To compare serum E2 level and neurotransmitters concentration in 
control and treatment groups at previtellogenic and early vitellogenenic 
phases, the Two-way ANOVA was applied. For multiple comparisons, 
Student-Newman-Keuls was used. The safety coefficient is %95 (P<0.05) 
for the test. Moreover, Sigma plot ver. 11 was used for analyzing the data 
and drawing the diagrams.

Results
The Liza klunzingeri fish seemed healthy during short and long-

term Exposure to NAP and no difference was observed in their 
swimming behaviors. Also, no stress-borne mortality happened. In 
light microscopy examination of the ovaries, previtellogenic and early 
vitellogenenic stages can be identified.

17β-Estradiol 

In short-term exposure the plasma levels of E2 showed no 
significant difference between control and treatment groups in both 
previtellogenic and early vitellogenesnic stages. However, in long-term 
Exposure with NAP, a significant decrease was observed in treatment 
group (P<0.05) (Figure 1).

Measurement of Neurotransmitters Concentrations

Serotonin

At previtellogenic stage: In response to short-term NAP exposure, 
serotonine content of telencephalon and hypothalamus increased (P ≤ 
0.05), (Table 1) and 5-HT content of pituitary decrease significantly (P ≤ 
0.05), (Table 1). In long-term NAP exposed fishes, there was a significant 
decrease in serotonine content of pre-optic area and hypothalamus (P 
≤ 0.05), (Table 2). Also, significant decrease of 5-HIAA was observed 
in the four regions at pervitellogenic stage during the short-term NAP 
exposure while during the long-term exposure, 5-HIAA level was 
significantly decreased in pituitary and increased in hypothalamus and 
the pre-optic area (P ≤  0.05), (Table 1 and 2).

Figure 1: Effect of naphthalene treatment on the response of plasma 17β 
estradiol to Short -term (3hr) or long- term (72hr) stress stimuli. P: previtellogenic 
stage. V: early vitellogenesnic stage. White bars: control. Shaded bars: 
naphthalene treatment. .*: indicatea significant difference from the control group 
(p< 0/05).
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hypothalamus [11]. Therefore, it can be expected that, when treated 
with NAP, more turbulence in serotonin system is observed at these 
areas. In telencephalon and hypothalamus, an increase in serotonin, a 
decrease in its metabolite concentration, and a decrease in 5-HIAA/5-
HT ratio were occurred at previtellogenic stage after a 3-hour exposure 
with NAP (Figure 2). To explain this suggestion, the ratio of the amount 
of main metabolite of a transmitter to the amount of transmitter can 
be applied as an index for estimating the amount of neurotransmitter 
release. This ratio is an index of synaptic activity; high ratios indicate 
high resorption and release or high activity of aminergic neurons, and 
low ratios show low resorption and release or low activity of aminergic 
neurons [33-37]. It seems that decrease in serotonin activity is due to 
the decrease in serotonin catabolism. It is likely that non functional 
MAO enzyme inhibit serotonin convergence into 5-HIAA [38,39]. 
Since, in short-term NAP exposure at previtellogenic stage, a decrease 
in serotonin metabolite and also in 5-HIAA/5-HT ratio occurred at the 
pre-optic area (Figure 2), with no change in serotonin content it can be 
concluded that the activity of serotonergic neurons may prevented by 
NAP [21]. NAP may have a preventive effect on serotonin catabolism 
at the pre-optic area.

At previtellogenic, 72 hours after treatment with NAP, a decrease 
in hypothalamus serotonin content occurred without any change in its 
metabolite and in the ratio of 5-HIAA/5-HT (Figure 2). Any disorder 
in the function of the enzymes synthesizing serotonin, e.g., tryptophan 
hydroxylase due to NAP [40]. 

Since NAP has narcotic characteristics [41], and the transporters 
of biogenic amines, such as serotonin, are the primary targets of 
narcotics in neurons [11,42,43], these compounds commonly bond 
with transporters and prevent the activity of neurotransmitters. 
Therefore, they may change the concentration of neurotransmitters, 

Vitellogenesnic stage: In response to short-term NAP exposure, 
5-HT content of telencephalon increased (P ≤ 0.05), (Table 1). The pre-
optic area, in long-term exposure, 5-HIAA level showed a significant 
decrease (P ≤ 0.05), (Table 2).

Dopamine

At previtellogenic stage: The results showed a significant increase 
of dopamine concentration in telencephalon and the pre-optic area 
after short-term exposing with NAP (P≤0.05), (Table 1). Moreover, 
three days after exposing with NAP, there was a significant decrease 
in dopamine concentration in telencephalon and the pre-optic area. 
In contrast, a significant increase of this monoamine was observed in 
hypothalamus and pituitary (P ≤ 0.05), (Table 2). DOPAC concentration 
showed a significant increase in pre-optic area during the short-term 
stress (P<0.05), (Table 1). The average DOPAC concentration had a 
significantly increased in all areas of telencephalon, the pre-optic area, 
hypothalamus, and pituitary during the long-term exposuring with 
NAP (P<0.05), (Table 2).

Vitellogenesnic stage: This neurotransmitter showed no significant 
difference in all areas in short-term exposing (P>0.05), (Table 1). For 
the long-term exposing, the average dopamine concentration showed a 
significant increase only in hypothalamus (P≤0.05), (Table 2). The results 
of studying the long-term stress in the fish at vitellogenic stage showed 
a significant decrease in oxidized dopamine metabolite concentration 
in telencephalon, and its significant increase in hypothalamus (P<0.05), 
(Table 2).

Noradrenalin: Noradrenalin showed the least amount of change, 
and its changes were limited to hypothalamus and pituitary at 
previtellogenic stage. The results revealed a significant increase of 
noradrenalin in hypothalamus at previtellogenic stage in both exposure 
with NAP (P ≤ 0.05), (Table 1 and 2). However, at previtellogenic stage, 
significant decrease of noradrenalin was observed in pituitary during 
short and long- term (P ≤ 0.05), (Table 1 and 2).

Discussion
Estradiol

The results of the present research showed a significant decrease of 
17β-estradiol levels at both previtellogenic and vitellogenic stages after 
the long-term NAP stress. Similar findings are reported on the effects 
of beta-naphthoflaven on Coho salmon [28] and BaP on Flander fish 
[9], rainbow trout [1] and Atlantic croaker [4].  PAHs are lipophilic 
compounds that may be stored in the tissues enriched in lipids, e.g., 
gonads and brain; therefore, they can have many effects on these organs 
[29,30]. The effect of NAP on 17β-estradiol may be due to either its 
interaction with the HPG axis or changes in E2 synthesis.

It is has been suggested that NAP inhibit the synthesis of the three 
enzymes involved in 17β-estradiol production [9], has anti-esterogenic 
activities and compete for bonding with ERs, and probably by prevention 
of expression of genes related to aromatase enzyme and by disturbance 
in  yolk production reduce vitellogenin [31].  Even more, the results 
obtained from the present research indicate that NAP-induced E2 
reduction is more remarkable at previtellogenic stage. Therefore, it can 
be concluded that previtellogenic stage is more susceptible to chemical 
stress than vitellogenic stage [27,32].

Serotonin

The cell bodies of serotonergic neurons were mostly located 
in diencephalon and mesencephalon, being more concentrated in 

Figure 2: Effect of naphthalene treatment on the response of 5-HIAA/5-
HT to Short and long- term stress stimuli. P: previtellogenic stage. V: early 
vitellogenesnic stage. White bars: control. Shaded bars: naphthalene treatment.*: 
indicate a significant difference from the control group (p< 0/05).
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decrease DA vesicular absorption in presynaptic neuron through its 
agonistic effect on DA transporters [48]. Since catabolism rate increases 
simultaneous with DA decrease, the occurrence of each possibility 
seems quite rare. In fact, DA decreasing, when it exposure with NAP, 
results from increasing the absorption rate and consumption of this 
neurotransmitter, In other words Increased dopaminergic activity in 
these areas (Figure 2).

Regarding the changes of dopamine system at the pre-optic area, 
during its 3-hour exposure with NAP at previtellogenic stage. Gesto et 
al. reported opposite results in immature rainbow fish. The reason for 
such different results may be attributed to fish sexual stage; because fish 
prepare to enter into yolk production at previtellogenic stage. Thus, in 
addition to NAP effect, hormonal feedbacks and physiologic changes 
in maturity may influence dopamine variations. Since the ecology and 
genetics of these species may differentiate the structure of the brain area 
in various species, difference in NAP storage pattern, and consequently 
in its effects on the area, seems possible. 

It may be said that long-term exposure with NAP has decreased 
dopamine system activity through stimulating synthesis and resorption 

and disturb the normal equilibrium of monoamine transmitters 
[44]. Hence, the decrease of serotonin concentration and 5-HIAA/5-
HT ratio in pituitary compared to control samples at previtellogenic 
stage in short- term may be induced by disturbance in the function of 
serotonin vesicular transporters during treatment with NAP (Figure 2). 
Although it is likely that NAP decreases the efficiency of the enzymes 
synthesizing serotonin, including tryptophan hydroxylase [45], the 
occurrence of each possibility may decrease serotonin metabolite and 
serotonin activity following a decrease in serotonin content.

Dopamine

Since, in vertebrate, reproduction is under the control of HPG axis 
and aminergic system indirectly regulates gonadal functions [15, 35] 
disfunctions of aminergic systems may disturb vitellogensis  [27,46]. 
After 72 hours, the amount of DA decreased in telencephalon and the 
pre-optic area at previtellogenic stage during exposuring with NAP. 
There are a few possibilities for decreasing DA: (1) as tyrosine convert 
into catecholamine dopamine by tyrosine hydroxylase enzyme after 
absorption in neurons, it is probable that NAP decreases dopamine 
production by preventing from its activity [47], and (2) NAP may 

Short-term exposure to NAP
Previtellogenic stage Vitelloginic stage

Tel Hypo Pitu PO Tel Hypo Pitu PO

5-HT
C 572.96 ± 66.53 1834.02 ± 21.81 55.77 ± 4.25 295.34 ± 3.1 491.33 ± 1.85 1351.66 ± 15.89 24.01 ± 0.55 238.78 ± 2.14

E 1108.36 ± 3.22↑ 1964.33 ± 9.79↑ 46.73 ± 1.82↓ 305.08 ± 3.62 650.44 ± 5.88↑ 1391.86 ± 4.32 22.51 ± 0.64 242.40 ± 3.06

5-HIAA C 368.6 ± 5.16 190.34 ± 3.17 41.16 ± 3.49 86.61 ± 2.40 212.43 ± 1.82 123.84 ± 4.38 7.91 ± 0.42 54.71 ± 2.21

E 334.5 ± 5.16↓ 163.13 ± 2.37↓ 28.13 ± 1.27↓ 56.35 ± 2.06↓ 217.92 ± 1.11 127.53 ± 0.26 9.86 ± 0.12 48.38 ± 1.45

DA
C 185.53 ± 2.41 1645.89 ± 55.02 293.24 ± 3.56 145.87 ± 8.35 107.97 ± 1.93 996.95 ± 1.76 207.27 ± 1.70 112.33 ± 1.45

E 218.72 ± 1.15↑ 1763.96 ± 218.65 304.61 ± 7.99 183.13 ± 2.83↑ 132.34 ± 19.63 1002.28 ± 0.68 190.22 ± 5.82 117.03 ± 1.06

DOPAC
C 11.66 ± 0.44 11.10 ± 0.46 34.77 ± 2.48 6.17 ± 0.72 6.56 ± 0.47 5.73 ± 0.28 13.07 ± 1.21 2.01 ± 0.04

E 14.20 ± 1.69 12.46 ± 0.75 31.86 ± 2.87 4.23 ± 0.21↑ 6.93 ± 0.23 6.66 ± 3.69 8.68 ± 0.77 2.23 ± 0.13

NA
C 679.18 ± 5.52 678.69 ± 5.73 101.12 ± 1.53 230.73 ± 2.30 604.56 ± 2.73 614.33 ± 2.96 73.76 ± 2.13 198.56 ± 0.78

E 753.53 ± 97.70 695.82 ± 3.22↑ 82.28 ± 1.54↓ 229.83 ± 2.08 593.03 ± 3.02 607.13 ± 1.04 67.94 ± 2.96 193.21 ± 1.59

Tel = Telencephalon, Hypo = Hypothalamus, Pitu = Hypophysis, PO = Preoptic area
5-HT= Serotonine, 5-HIAA= 5-hydroxy-3-indoleacetic acid, DA = Dopamine, DOPAC= 3,4-dihydroxyphenylacetic acid, NA. = Noradrenalin, C= Control, E= Exposed whit
NAP
↑ significantly increased in compare with control, ↓ significantly decreased in compare with control,

Table 1: Alterations of transmitter’s content in certain regions of brain in female fish exposed to NAP.

Long-term exposure to NAP
Previtellogenic stage Vitelloginic stage

Tel Hypo Pitu PO Tel Hypo Pitu PO

5-HT C 638.72 ± 1.54 1831.06 ± 20.72 53.96 ± 2.09 295.66 ± 3.19 489.66 ± 0.88 1351.33 ± 16.49 23.00 ± 1.10 239.23 ± 2.45

E 579.46 ± 64.89 1787.36 ± 2.43↓ 50.88 ± 0.33 157.56 ± 19.19↓ 481.50 ± 2.27 1386.10 ± 2.41 16.43 ± 0.16 234.81 ± 0.53

5-HIAA
C 370.93 ± 4.38 191.16 ± 3.72 41.32 ± 3.76 106.79 ± 2.57 213.43 ± 1.82 124.75 ± 2.27 10.97 ± 0.42 55.56 ± 1.82

E 382.24 ± 2.32 215.06 ± 2.25↑ 31.86 ± 2.44↓ 116.72 ± 3.45↑ 208.29 ± 0.37 1386.10 ± 2.41 11.92 ± 0.06 47.11 ± 4.66↓

DA
C 187.56 ± 2.27 1643.43 ± 54.27 301.07 ± 1.05 145.21 ± 5.59 108.5 ± 2.21 995.56 ± 2.43 205.47 ± 1.38 114 ± 1.52

E 180.2 ± 1.01↓ 1945.06 ± 47.31↑ 304.13 ± 0.94↑ 105.66 ± 2.83↓ 104.03 ± 1.06 1520.34 ± 26.17↑ 208.60 ± 0.65 108.7 ± 0.65

DOPAC
C 11.73 ± 0.31 11.28 ± 0.35 34.93 ± 1.87 6.07 ± 0.62 6.7 ± 0.34 5.98 ± 0.24 13.61 ± 0.38 2.25 ± 0.29
E 15.7 ± 0.97↑ 12.98 ± 0.17↑ 26.23 ± 2.55↑ 11.88 ± 0.50↑ 2.34 ± 0.33↓ 13.74 ± 0.75↑ 11.94 ± 0.31 1.83 ± 0.54

NA
C 681.16 ± 2.02 674.92 ± 7.98 101.96 ± 1.74 233.46 ± 2.27 607.93 ± 2.26 614.00 ± 2.31 57.00 ± 1.79 200.2 ± 0.47
E 688.4 ± 1.13 754.95 ± 19.93↑ 60.69 ± 4.40↓ 232.23 ± 1.47 612.89 ± 0.37 621.49 ± 5.64 78.36 ± 1.12 202.36 ± 0.53

Tel = Telencephalon, Hypo = Hypothalamus, Pitu = Hypophysis, PO = Preoptic area
5-HT= Serotonine, 5-HIAA= 5-hydroxy-3-indoleacetic acid, DA = Dopamine, DOPAC= 3,4-dihydroxyphenylacetic acid, NA. = Noradrenalin, C= Control, E= Exposed whit
NAP
↑ significantly increased in compare with control, ↓ significantly decreased in compare with control

Table 2: Alterations of transmitter’s content in certain regions of brain in female fish exposed to NAP
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and dopamine catabolism, or has decreased dopamine concentration 
by disordering the function of monoamine oxidase (MAO) enzymes 
and stimulating such enzymes for more dopamine oxidation [38,39]. 

In long-term NAP exposure, DA content and DOPAC metabolite 
increased in hypothalamus at both previtellogenic and vitellogenic 
stages. It means that the synthesis, release, and catabolism of dopamine 
were increased.

Noradrenalin

The amount of noradrenalin in hypothalamus increased at 
previtellogenic stage within 3 and 72 hours after exposuring with NAP. 
Gesto et al. reported similar results when they studied the effects of 
NAP on brain neurotransmitters in rainbow trout. Since noradrenergic 
inputs reach mesencephalon (hypothalamus) from hindbrain, it 
appears that NAP increases the concentration of noradrenalin through 
its stimulating effect on its synthesis. Moreover, as DA is the precursor 
of noradrenalin synthesis and amino acids are bounded between these 
two neurotransmitters [49], it may be said that noradrenalin changes 
follow dopamine changes in hypothalamus after 72 hours. As the 
cellular masses of noradrenalin neurons are located at locus coeruleous 
in brainstem and their axons extend to pituitary [11,50], it appears 
that noradrenalin decrease is induced by NAP at both 3 and 72 hour 
exposures preventive effect on noradrenalin production in brainstem 
or its release from the axons of adrenergic neurons in pituitary. Despite 
the fact that intermediate metabolites are bounded between dopamine 
and noradrenalin, it seems that different mechanisms arising from NAP 
activity indirectly influence the metabolism of each catecholamine in 
pituitary neural terminals. 

Treatment with NAP disturbed the balance of biogenic amines 
in some parts of fish brains at previtellogenic and vitellogenic stages. 
However, the changes were more evident at previtellogenic stage. The 
patterns of these changes may vary due to aminergic neurons variance, 
exposure duration, and sexual stages. The results show that NAP, as an 
organic pollutant, has a high potential for creating extensive changes in 
brain monoamine system. The complex of aminergic neurotransmitters 
related to hypothalamus, pituitary, and the pre-optic area are involved 
in pituitary endocrine activities such as regulating GtH hormone, 
synchronization of important occurrence in reproduction [11,35]. The 
results indicate most changes in the aminergic system in this area. 

The feedback effects of steroids on the hormonal task of pituitary-
hypothalamus are well recognized [51]. The steroids released into the 
body may influence the increase or decrease of pituitary secretions, at 
least by positively or negatively affecting the controlling factors of these 
secretions, including neurotransmitters [15, 52]. Since NAP treatment 
has caused changes in 17β-estradiol levels in plasma, it is likely that level 
changes of this hormone has led to the disturbance of brain monoamine 
system due to NAP treatment through positive or negative feedbacks. 
NAP may disturb yolk production process by directly influencing the 
gonadal tissue or the HPG axis.

Conclusion
The results of the present study indicate that, in previtellogenic 

stage of fish reproductive period, NAP may targets serotonergic 
and dopaminergic systems in short-term and long-term exposure, 
respectively.  Moreover, NAP induced changes in 17β-estradiol probably 
is due to the consequence of the effects of NAP on aminergic systems 
which alternatively alter the output of HPG axis.  Disturbance of yolk 
production endangers the successful reproduction in fish.
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