alexa Cerastes cerastes and Vipera lebetina Snake Venoms Apoptotic – Stimulating Activity to Human Breast Cancer Cells and Related Gene Modulation | Open Access Journals
ISSN: 1948-5956
Journal of Cancer Science & Therapy
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Cerastes cerastes and Vipera lebetina Snake Venoms Apoptotic – Stimulating Activity to Human Breast Cancer Cells and Related Gene Modulation

Shebl RI1, Mohamed AF1, Ali AE2* and Amin MA2

1Department of Virology, The Holding Company for Biological Products and Vaccines (VACSERA), Cairo, Egypt

2Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Egypt

*Corresponding Author:
Ali AE
Department of Microbiology & Immunology
Faculty of Pharmacy
Cairo University, Kasr El-Aini St. 11562
Cairo, Egypt
Tel: 202 23639307
Fax: 202 23628426
E-mail: [email protected]

Received date: August 10, 2012; Accepted date: September 12, 2012; Published date: September 14, 2012

Citation: Shebl RI, Mohamed AF, Ali AE, Amin MA (2012) Cerastes cerastes and Vipera lebetina Snake Venoms Apoptotic – Stimulating Activity to Human Breast Cancer Cells and Related Gene Modulation. J Cancer Sci Ther 4: 317-323. doi: 10.4172/1948-5956.1000161

Copyright: © 2012 Shebl RI, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Cancer Science & Therapy

Abstract

Apoptosis occurs normally during development and aging as a homeostatic mechanism to maintain cell populations. Dysregulation of apoptosis can disrupt the equilibrium between cell growth and cell death leading to the development of cancer. Thus, the investigation of new biological apoptotic activators could play an important role in cancer therapy. In the present study, Cerastes cerastes and Vipera lebetina snake venoms were evaluated for their ability to activate apoptosis in cancer cells where test venoms exhibited a concentration and time dependent cytotoxic effect on breast cancer (MCF-7) cells. Typical apoptotic morphological features were demonstrated in venom treated cells detected via transmission electron microscope. In addition, flow cytometric analysis showed an increase in the percentage of apoptotic cells post 24 h treatment relative to venom concentrations. At the molecular level, test venoms induced apoptosis were mediated by up regulation of pro-apoptotic genes (p53 & Bax) and down regulation of anti-apoptotic gene (Bcl-2) in MCF-7 cells, indicating that these venoms could serve as apoptotic stimulators, presenting a novel and potential therapeutic strategy for cancer treatment.

Keywords

Cerastes cerastes; Vipera lebetina; Breast cancer cells; p53 gene; Bax gene; Bcl-2 gene

Introduction

Despite significant progress in cancer treatment, cancer remains one of the leading causes of death worldwide. Current conventional cancer therapies such as radio and chemotherapies exert their therapeutic effect by indirectly promoting apoptosis as they induce cellular DNA damage followed by stimulating apoptosis through the intrinsic pathway but they cannot differentiate between malignant and normal cell types [1].

Snake venoms are mixture of numerous proteins and peptides. Several studies have demonstrated the potential of some bioactive compounds from snake venoms as cytotoxic, anti-tumor and apoptosis-inducing agents in different cancer cell lines as well as in some in vivo models [2-5]. Components of snake venoms that have already been reported to induce cytotoxicity and apoptosis in cancer cells included atroporin and kaotree isolated from Crotalus atrox and Naja n. kaouthia, contortrostatin from Agkistrodon contortrix and cardiotoxin III from Naja naja atra venom [6-9].

Tumor suppressor protein; p53 is one of many proteins that play an important role in activation of the intrinsic pathway of apoptosis. Consequently, mutation of p53 gene, which is observed in as many as half of all human cancers, renders tumor cells resistant to conventional radio and chemotherapies [10]. Understanding of apoptosis has provided the basis for novel targeted therapies that could induce death in both responsive and resistant cancer cells through activation of death receptors on the cell surface or through a series of intracellular events (intrinsic pathway) thus stimulating apoptosis [11].

It was observed that the activity of p53 was implicated in the transcriptional activation of Bax gene that was involved in apoptosis, and also in the alteration of Bcl-2/Bax gene expression ratio, thereby indicating that the relation between these pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins was one of the important factors deciding the fate of cancer cells [12]. In this context, the investigation of novel targeted apoptotic activators in cancer cells would present a new strategy in cancer therapy [13,14]. Accordingly, the present study aimed to evaluate the apoptotic stimulating activity of selected snake venom models and related effect on pro-apoptotic and anti-apoptotic gene expression.

Methods

Cytotoxicity

Cytotoxic effect of Cerastes cerastes (C.cerastes) and Vipera lebetina (V.lebetina) snake venoms, kindly supplied from VACSERA Sera Plant-Egypt, was evaluated to breast cancer cell line [MCF-7 cells, ATCC: HTB-22] at 24 and 48 h interval using MTT assay, where test venoms were dissolved in cell culture media (Biowhittaker-Belgium) to contain 10.24 μg/ml and sterile filtered using 0.22 μm syringe filter (Millipore-USA) [15].

MCF-7 cells precultured 96-well plates (Nunc-USA) were treated with descending double fold serially diluted venoms at 37°C for the required time interval. Negative cell control was included. Residual living cells were treated with 25 μl of MTT dye (0.5 mg/ml) (Sigma- Aldrich-USA) at 37°C for 4 h. MTT was discarded. Plates were PBS washed three times. Dimethyl sulfoxide (BDH-England) was added as 50 μl/well. Plates were shaked for 30 min to dissolve the produced intracellular blue MTT-Formazan complex. Optical densities (O.Ds) were measured at 570 nm using an ELISA plate reader (Dynatech-England). Data were reported for three independent experiments as mean ± SD [16].

Viability percentage was calculated as follows according to [17].

Statistical significance between treated and untreated cells was determined using one way ANOVA. Differences at P values less than 0.05 were considered significant.

IC50 of test venoms were determined using prism program.

Morphological changes

Morphological changes detected 24 h post MCF-7 cells treatment with different concentrations of test venoms were investigated using inverted microscope (Hund-Germany) [18].

Apoptosis detection using flow cytometry

Quantitative detection of apoptosis induced by snake venom was assessed using annexin-V apoptosis detection kit (Trevigen-USA). MCF-7 cells treated with C.cerastes (0.75, 1.5, 3 μg/ml) and V.lebetina (1.25, 2.5, 5 μg/ml) venoms as well as untreated cells were washed with 500 μl cold PBS (1X) and collected by centrifugation. Each sample was incubated in the dark for 15 min with 100 μl annexin-V incubation reagent consisting of: 10 μl binding buffer (10 X), 10 μl propidium iodide, 1 μl annexin V-FITC and 79 μl de-ionized distilled water at room temperature. Samples were treated with 400 μl binding buffer (1 X) and processed using flow cytometer (Beckman Coulter Epics XL–USA) within 1 h for maximal signal. All tests were repeated in triplicates.

Transmission Electron Microscope [TEM]

MCF-7 cells were treated with IC50 of test venoms. 24 h post treatment cells were collected, fixed with 2.5% PBS buffered gluteraldehyde (TAAB-UK) for 6 h at 4°C, PBS washed, fixed in 1% osmium tetroxide (TAAB-UK) in PBS for 1 h at 4°C and rewashed again using PBS. Each cell pellet was dehydrated in ascending graded concentrations of cold ethanol solutions, immersed in propylene oxide (ICI-UK) and embedded in equal volumes of epoxy/resin (Sigma-Aldrich-USA) mixture. Ultra-thin sections of cell pellet were cut then stained with uranyl acetate and lead citrate (Sigma-Aldrich-USA) and observed under transmission electron microscope (Jeol-Japan) [19].

RNA extraction

RNA was extracted from MCF-7 cells treated with C.cerastes (0.75, 1.5, 3 μg/ml) and V.lebetina (1.25, 2.5, 5 μg/ml) venoms in addition to untreated control cells post 24 and 48 h treatment according to manufacturer’s protocol using SV total RNA isolation system (Promega-Germany). Cells were collected and PBS (ice-cold, sterile) washed twice. RNA lysis buffer (175 μl) and RNA dilution buffer (350 μl) were added to cell pellet, mixed by inversion and heated for 3 min at 70°C. Cells were centrifuged at 14000 rpm for 10 min. The clear lysate was transferred to clean tube and 200 μl of 95% ethanol were added. The mixture was transferred to spin basket assembly and centrifuged for 1 min. RNA wash solution was added as 600 μl, centrifuged for 1 min followed by 50 μl of DNase incubation mix [40 μl Yellow Core Buffer, 5 μl 0.09 M MnCl2 and 5 μl DNase I enzyme] and incubated at room temperature for 15 min. Reaction was stopped by adding 200 μl of DNase stop solution followed by centrifugation for 1 min. Each spin basket was first washed with 600 μl of RNA wash solution, centrifuged for 1 min followed by second wash with 250 μl of RNA wash solution and centrifuged for 2 min to ensure removal of RNA impurities. Finally RNA was eluted using 100 μl of nuclease free water. Extracted RNA was stored at – 70°C.

Reverse transcription and polymerase chain reactions

Extracted RNA was reverse transcripted to cDNA using RevertAid first strand cDNA synthesis kit (Fermentas–Lithuania) where extracted RNA (1 μg), random hexamer primer (1 μl) and DEPC-treated water (to 12 μl) were incubated at 65°C for 5 min. Reaction buffer (4 μl, 5 X), 1 μl ribolock RNase inhibitor (20 U/μl), 2 μl dNTP Mix (10 mM) and 1 μl reverse transcriptase (200 U/μl) were added and incubated at 25°C for 5 min followed by thermal treatment at 42°C for 60 min. Reaction was terminated by heating at 70°C for 5 min. The cDNA products were stored at -70°C till use. Verification of cDNA synthesis from extracted RNA was carried out using GAPDH specific internal control primers. The expression of pro-apoptotic genes (p53 & Bax) and anti-apoptotic gene (Bcl-2) was carried out using newly synthesized cDNA as templates for PCR. Twenty five μl dream Taq green master mix (Fermentas–Lithuania), 4 μl cDNA, 2 μl forward primer, 2 μl reverse primer and 17 μl nuclease free water were pre-denaturated at 94°C for 3 min. Amplification was performed (35 cycles); each cycle consisting of denaturation at 94°C for 30 sec, annealing at 58°C (GAPDH), 57°C (p53), 58°C (Bax) and 55°C (Bcl-2) for 30 sec followed by extension at 72°C for 45 sec. Reactions were terminated by heating at 72°C for 5 min. Non-reverse transcribed RNA was also included to confirm the absence of genomic DNA. PCR product (10 μl) was loaded on 1% agarose gel and visualized using UV transillumiator after staining with ethidium bromide. Polymerase chain reactions were carried out in triplicates followed by denstiometric analysis of bands intensities using gel documentation system. Data representing mRNA expression levels of p53 and Bax/Bcl-2 were calculated as mean of band intensities ± SD and plotted against test venoms concentrations and time intervals. Statistical significance was carried out using one way ANOVA [20]. Differences at P values less than 0.05 were considered statistically significant.

Primer sequences and the PCR product size were described in Table 1.

Gene Primer sequences (5' -3') Product size (bp) Reference
P53 F: TCA GAT CCT AGC GTC GAG CCC 438 [42]
R: GGG TGT GGA ATC AAC CCA CAG
Bax F: ATG GAC GGG TCC GGG GAG CA 322 [43]
R: CCC AGT TGA AGT TGC CGT CA
Bcl-2 F: GTG AAC TGG GGG AGG ATT GT 216 [43]
R: GGA GAA ATC AAA CAG AGG CC
GAPDH F: CAA GGT CAT CCA TGA CAA CTT TG 496  
R: GTC CAC CAC CCT GTT GCT GTA G  

Table 1: Primer sequences of apoptosis related genes and internal control.

Results

Cytotoxicity

Data recorded revealed that test venoms showed cytotoxicity to breast cancer (MCF-7) cell line in a dose dependent manner. Recorded IC50 of C.cerastes was 1.5 μg/ml, while IC50 of V.lebetina was 2.5 μg/ml. It was observed that C.cerastes showed statistically significant higher cytotoxicity to MCF-7 cells than V.lebetina venom at P<0.05. In the mean time, venoms cytotoxicity to MCF-7 cells post 24 and 48 h treatment exhibited time and dose dependent profile (Figure 1).

cancer-science-therapy-cytotoxic-effect

Figure 1: Evaluation of cytotoxic effect of C.cerastes and V.lebetina snake venoms to MCF-7 cells using MTT assay based on the amount of active lactate dehydrogenase released from residual viable cells showing statistically significant cytotoxic effect of test venoms relatively to time and concentrations at P < 0.05. Error bars represent mean ± SD of 3 independent experiments.

Morphological changes

Untreated MCF-7 cells were homogeneously distributed in the culture field showing a polygonal shape with distinct boundaries and homogenous cellular contents (Figures 2A, 2E). On the other hand, various morphological abnormalities were recorded 24 h post venoms treatment. At the lowest concentrations, cells lost their characteristic appearance, became rounded and detached out of the culture surface, while other cells retained their normal morphological appearance (Figures 2B, 2F). Increasing venoms concentrations resulted in increased cellular irregularities and larger areas devoid of cells (Figures 2C, 2G). At the highest concentrations cells showed obvious deterioration and deformation with severe shrinkage and condensation of their cellular contents (Figures 2D, 2H).

cancer-science-therapy-morphological-changes

Figure 2: [A-H]: Monitoring of morphological changes in MCF-7 cells post treatment with C.ceratstes and V.lebetina venoms relatively to concentrations 24 h post treatment [A and E]: Untreated cell control; [B]: cells treated with C.cerastes (0.75 μg/ml); [C]: cells treated with C.cerastes (1.5 μg/ml); [D]: cells treated with C.cerastes (3 μg/ml); [E]: cells treated with V.lebetina (1.25 μg/ml); [F]: cells treated with V.lebetina (2.5 μg /ml); [G]: cells treated with V.lebetina (5 μg /ml) showing distinct cytotoxic effect of test venoms with larger areas of detached cells along with increasing venom concentrations compared to the normal appearance of untreated MCF-7 cells.

Transmission electron microscope

Untreated MCF-7 cells showed the presence of intact cell membrane, normal appearance of nuclear chromatin with even distribution of heterochromatin and euchromatin (Figures 3A, 3E). On the other hand 24 h venom treated cells exhibited signs of apoptosis including chromatin condensation (Figures 3B, 3F, 3H), cytoplasmic vacuoles (Figures 3C, 3F, 3G), cell membrane blebbing or budding (Figure 3G), nuclear shrinkage (Figures 3C, 3G) and loss of the internal organization of the mitochondria with undistinguishable cristae structure (Figures 3D, 3H).

cancer-science-therapy-inhibitory-concentration

Figure 3: [A-H]: Morphological features of apoptotic MCF-7 cells post treatment with 50% inhibitory concentration (IC50) of both C.cerastes and V.lebetina venoms compared to untreated cell control using transmission electron microscope (TEM). [A and E]: Untreated cell control; [B, C, D]: cells treated with C.cerastes (1.5 μg/ml); [F, G, H]: cells treated with V.lebetina (2.5 μg/ml). Treated cells exhibited characteristic features of apoptosis as chromatin condensation, cytoplasmic vacuoles, cell membrane budding as well as undefined mitochondrial cristae structure.

Apoptosis detection using flow cytometry

Flow cytometric analysis revealed that test venoms induce apoptosis in venom treated cells compared to untreated cells. The percentage of early and late apoptotic cells was significantly increased at P<0.05 with increasing test venoms concentrations. In addition, flow cytometric data recorded a statistically significant decreased in the percentage of viable cells compared to untreated cells post 24 h treatment (Figure 4).

cancer-science-therapy-cytometric-analysis

Figure 4: Flow cytometric analysis post 24 h treatment of MCF-7 cells with different concentrations of C.cerastes and V.lebetina venoms compared to untreated cells control using combined annexin-V and propidium iodide dyes. Data was presented in two-dimensional dot plots, where the regions of early, late apoptotic and viable cells were separated depending on fluorescence intensity. The number of early and late apoptotic cells significantly increased relatively to test venoms concentrations, whereas the number of viable cells was significantly decreased at P<0.05. C2: late apoptotic; C3: viable cells; C4: early apoptotic.

Effect of C. cerastes and V. lebetina venoms on apoptosis related genes

C. cerastes and V. lebetina were found to selectively stimulate apoptosis in MCF-7 cells where the level of mRNA expression of pro-apototic genes (p53 and Bax) was up regulated in 24 and 48 h venom treated cells compared to untreated cells. On the other hand, Bcl-2 (anti-apototic gene) was down regulated (Figure 5A). The densitometric analysis of the band intensities verified that C. cerastes and V.lebetina MCf-7 treated cells resulted in a statistically significant concentration and time dependent increase in p53 and Bax/Bcl-2 mRNA expression levels at P<0.05 thus it could be concluded that test venoms would be able to trigger cancer cells towards apoptosis through regulating the expression of these genes (Figure 5B).

cancer-science-therapy-mRNA-expression

Figure 5a: Alteration of mRNA expression of apoptosis related genes in MCF-7 cells post 24 and 48 h treatment with different concentrations of C.cerastes (0.75, 1.5 & 3 μg/ml) and V.lebetina (1.25, 2.5 & 5 μg/ml) venoms demonstrating up regulation of p53 and Bax genes and down regulation of BCl-2 expression levels compared to negative cell control. M: Marker; C: control untreated cells.

cancer-science-therapy-Denstiometric-evaluation

Figure 5b: Denstiometric evaluation of p53 and Bax\Bcl-2 mRNA expression levels 24 and 48 h post MCF-7 cells treatment with different concentrations of C.cerastes (0.75, 1.5 & 3 μg/ml) and V.lebetina (1.25, 2.5 & 5 μg/ml) venoms revealing statistically significant increase in p53 as well as in Bax\Bcl-2 mRNA expression levels compared to their levels in untreated cells at P< 0.5. Error bars represent mean ± SD of triplicates.

Discussion

Resistance to chemotherapy is a major problem in treatment of cancer. It often prevents tumor cells from undergoing sufficient levels of programmed cell death; apoptosis, resulting in cancer cell survival and treatment failure [21]. Therapeutic agents that targeted the apoptotic pathway, including pro-apoptotic proteins activators or inhibitors of anti-apoptotic proteins, could overcome the problem of resistance through directing cancer cells to self destruction [22]. Based on our previous finding, the effect of test venoms on different cancer cell lines was investigated revealing variable cytotoxic effect to Hep-2, HepG- 2, Hela and MCF-7 cancer cells (unpublished data). MCF-7 cells were selected as a cancer cell model due to the wide spread of breast cancer compared to other types of cancer cells. In the present study, inhibition of cancer cells proliferation post snake venom treatment was performed by monitoring the activity of lactate dehydrogenase (LDH) using MTT assay. A remarkable cytotoxicity to MCF-7 cells was observed where IC50 value of C.cerastes was 1.5 μg/ml, while IC50 of V.lebetina was 2.5 μg/ml. In consistence with other studies the cytotoxic effect of animal venoms on cancer cells were concentration and time dependent [23-25]. Variation in cytotoxic concentration range to cancer cell lines might be regarded to venom variable protein content where it was reported that different degree and nature of anti-carcinogenic property of different snake venoms was attributed to the difference in their constituents [26] as well as the variation in LD50 of test venoms, time post treatment and the difference in cellular reactivity to apoptotic stimulators.

In other studies, snake venoms also demonstrated in vivo anticancer activity, where it was reported that Cobra venom apoptotically inhibited the growth of implanted hepatocellular carcinoma cells in mice [27]. In addition, Echis coloratus snake venom and Hydrophis spiralis sea snake venom had antitumor activity on Erlich ascites carcinoma bearing mice [28,29]. Moreover, it was reported that the cytotoxic activity of C.cerastes venom against Ehrlich ascites carcinoma cells in mice might be due to the presence of a cytotoxin rather than to the direct cytolytic effect of the venom [30]. In addition, indian monocellate cobra (Naja kaouthia) and Russell’s viper (Vipera russelli) crude venoms showed cytotoxicity on Ehrlich ascites carcinoma (EAC) cells in vivo as well as they exhibited potent cytotoxic and apoptogenic effect on human leukemic cells (U937 & K562) [25].

In consistence with the present study, it was found that test venoms induced cell growth arrest through chromatin condensation as well as cytoplasmic and mitochondrial alteration thus triggering cells towards programmed cell death [31,32]. The induction of apoptosis was further confirmed using flow cytometric analysis where during early stages of apoptosis the plasma membrane losses asymmetry causing phosphatidylserine (PS) to be translocated from the cytoplasmic face to the outer surface of the plasma membrane. Binding of Annexin-V to the exposed PS could detect early apoptotic cells (Annexin-V positive). During late apoptosis cell membrane lost its selective permeability, allowing propidium iodide to enter the cells where it binds to DNA (Annexin-V and propidium iodide positive) thus late apoptotic and/or necrotic cells could also be detected. On the other hand, viable cells remained unstained [33].

It has long been recognized that tumor suppressor gene, p53, was induced by DNA damage. The resulting increase in p53 level lead either to the induction of cell cycle arrest or apoptosis. Thus, p53 activation contributed to suppression of tumor growth [34]. The Bcl-2 family proteins, including Bcl-2 and Bax, contribute to the regulation of apoptosis. In particular, anti-apoptotic members of the Bcl-2 family, such as Bcl-2, act to prevent or delay cell death, whereas the pro-apoptotic Bax promotes apoptosis [35]. Regarding Bax/Bcl-2 ratio, at both the mRNA and protein levels, many studies reported that the increase in this ratio favors apoptosis [36,37].

At the molecular level and in consistence with the present study, induction of apoptosis was illustrated by up-regulation of both p53 and Bax genes and down regulation of Bcl-2 gene. Other studies revealed that V. lebetina snake venom inhibits the growth of human prostate cancer cells by induction of apoptosis through inhibition of nuclear factor KB (NF-KB), this toxin increased the expression of pro-apoptotic genes (p53, Bax, caspase-3, and caspase-9), but down-regulated antiapoptotic (Bcl-2) gene [38]. Consistent with the induction of apoptosis at molecular levels, the level of reactive oxygen species (ROS) was increased and mitochondrial membrane potential (MMP) was also disrupted in V.lebetina treated neuroblastoma cells [39]. Various mechanisms have been suggested to elucidate snake venom-induced apoptosis, where it was reported that cardiotoxin III (CTX III), a basic polypeptide isolated from Naja naja atra venom, induced apoptosis in human leukemia (K562) cells through mitochondrial mediated pathway in which, venom treated cells lost the mitochondrial membrane potential, released cytochrome c from mitochondria into the cytosol resulting in activation of caspase-9 and caspase-3. Apoptotic cell death was also accompanied by up-regulation of both Bax and endonuclease G (Endo G) and down regulation of Bcl-xl [8,9]. Besides, CTX III induced apoptosis in human colorectal cancer (Colo-205) cells through mitochondrial and caspase dependent pathway as well as increasing the Bax/Bcl-2 ratio in Colo-205 cells [40]. In another study, CTX III suppressed MCF-7 cells proliferation and induced apoptosis through up regulation of Bax (pro-apoptotic gene) and down regulation of Bcl-XL, Bcl-2 and XIAP (anti-apoptotic genes) [41].

The snake venoms anticancer activities proving progressive potentials, thus further studies are substantial to purify and assess the active antitumor components. It is also recommended that active proteins should be submitted to proteomic studies and used as a prototype for future synthesis of new anticancer drugs depending on activation of the intrinsic pathway of apoptosis targeting cancer cells to self destruction.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 11736
  • [From(publication date):
    October-2012 - Sep 25, 2017]
  • Breakdown by view type
  • HTML page views : 7948
  • PDF downloads :3788
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords