Characteristics and Antagonistic Potential of *Pseudomonas* spp. against *Pratylenchus loosi*

Rahanandeh H1*, Khodakaramian G2, Hassanzadeh N1, Seraji A2 and Asghari SM4

1Department of Plant Pathology, Science and Research Branch, Islamic Azad University, Hesark Ponak, Tehran, Iran
2Department of Plant Protection, College of Agriculture, Bu – All Sina University, Hamadan, Iran
3Department of Plant Protection, Iranian Tea Research Institute, Lahijan, Guilan, Iran
4Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran

Abstract

The tea root lesion nematode, *Pratylenchus loosi*, has been shown internationally as a serious nematode pest causing yield losses in tea plantations. The purpose of this study is that, with regard to biological control as one of the main section nematodes and sustainable agriculture, integrated management systems, allowing application and biocontrol agents.

Keywords: *Camellia sinensis*; RLNs; *Pratylenchus loosi*; Bacterial biocontrol agents

Introduction

Tea, *Camellia sinensis* (L.), O. Kuntze, cultivated on 2.85 million ha, with a total production of 3.87 million ton per annum. Tea is considered as a strategic economic crop in Iran. According to FAO statistics in 2010, tea is already harvested in Iran from a surface of about 32000 ha [1]. This plant is attacked by more than 30 animal species. Amongst the various constraints to tea production, plant parasitic nematodes have a significant economic importance [2]. As a permanent crop grown as a monoculture, tea creates a stable micro-climate and provides a uniform food environment for several pests and diseases. More than 40 species of plant parasitic nematodes, belonging to 20 genera, have been reported from tea worldwide [3]. Two species of root-lesion nematodes (RLNs), *Pratylenchus loosi* Loof 1960 and *P. brachyurus* (Godfrey) Godey, are known to attack tea plants in some producing countries such as Sri Lanka, Philippines, Japan, China, Bangladesh, Taiwan, India, Vietnam, USA and Australia [4]. Among these species, *P. loosi*, was seen for the first time in 1930 by Gadd in tea gardens in Sri Lanka and in 1960 was reported by Loof [5]. This nematode caused a severe damage on tea plants and remarkably reduced crop yields in many other countries such as India, China, Japan and Bangladesh [3]. *Pratylenchus loosi* is a serious parasite of tea in Iran [6,7], causing losses in tea quantity and quality [8].

The side, undesired effects of common pesticides led the investigators to develop and apply environmentally safe pest management strategies, including microbial-based compounds. Bacteria, yeast and filamentous fungi are general insects of soil and plant surfaces, and some species are known for various mechanisms limiting disease incidence or severity [9-17].

Various management systems have been designed to envisage and introduce more efficient compounds against plant-parasitic nematodes, notably in the past thirty years [18-20]. The rhizoplane and rhizosphere are colonized and differently affected by many microorganisms. Plant growth promoting bacteria supply plant growth promoting matter and antibiotics. They prepare fundamental guarding against nematode diseases [21]. Up to 10% of rhizobacterial populations have been shown to be antagonist on parasitic nematodes. However the application of crop rotations and mulches as a procedure to increase levels of rhizobacteria antagonists to plant-parasitic nematodes showed variable results [22-25].

The nematicidal activities of these bacteria may be attributed to antibiotics produced in the agar medium. The seed or tuber treatments with non-parasitic rhizobacteria and even their application in soils may affect root penetration by nematodes on diverse crops, both in greenhouse and field conditions. Use of these non-parasitic rhizobacteria among other beneficial microorganisms such as root-nodule bacteria, arbuscular mycorrhizae, saprophytic and opportunistic fungi appeared advantageous for suppression of nematode populations on various crops [26-31].

Aim of this study was to isolate and characterize some native bacterial strains capable to suppress tea root-lesion nematodes, under laboratory condition.

Materials and Methods

Sampling and nematode extraction

Sampling for extraction of *P. loosi* was performed in the years 2010-2011, in infested tea plantation of north Iran. In each year 20 complex
sample were collected at infested tea gardens. Each sample consisted of dozens of tiny sub samples collected at 15-25 cm depth and 20 cm distance from the crown. The samples, one and a half pounds of tea and ten gram tea roots, were later transferred to the laboratory. The tea root lesion nematode separation method was used [32], and centrifugal separation was performed according to the method of [33], from collected roots.

Isolation of antagonistic bacterial strains

A total of 40 bacterial strains were isolated from the rhizosphere of tea plants from the Guilan province (North of Iran). All isolates were cultured on both nutrient agar and King’s B media. In brief, one gram of soil was suspended in 100 ml sterilized distilled H2O containing one gram of gelatin and then shacked for 30 minutes at 70 rpm. The resultant suspensions were diluted up to 1x10⁶ and streaked on agar media and kept at 27 ± 1°C for 72 h. Bacterial colonies were purified and stored at 4°C for further investigation.

In vitro evaluation of antagonistic activities of the bacterial strains against root-lesion nematodes

Bacterial suspensions were prepared in sterilized distilled water adding 1 ml from each suspension to 100 ml nutrient broth or King’s B broth, later allowed to grow under shaking for 48 h at 25°C. The cultures were centrifuged at 5000 rpm for 15 min and the supernatants were evaluated for anti-nematicidal activities of tested bacteria against *P. loosi*. To perform the test, a total of 30 *P. loosi* active juveniles were added into 1 ml of each bacterial supernatant and incubated at 27-29°C for 48 h. Sterilized distilled water was used as control. The experiment was conducted in a randomized completely design in three replicates and following formula was used to calculate percentage of nematode juvenile mortality, as normalized on controls.

\[
\text{Mortality} (%) = \frac{\text{C1} - \text{C2}}{\text{C1}} \times 100
\]

Where, C1 is the number of live nematodes juveniles in control treatments and C2 is the number of live nematodes juvenile counted in other treatments [34].

Phenotypic characteristics of the bacterial strains

The most effective bacterial strains were selected and their phenotypic features were characterized based on the standard bacteriological methods [35].

Protease test

This test was carried out using skim milk agar (casein peptone 5 g, yeast extract 5 g, skim milk 1 g, glucose 1g and agar 10.5 g per liter). Bacterial strains were inoculated on casein agar medium and the plates were incubated at 27°C for 48 hours. The clear zones around the colonies were considered as positive reaction [36].

Results

Isolation of antagonistic bacterial strains

Antagonistic activities of the challenged bacterial strains were determined based on juvenile mortality. The strains nematicidal activities were quite variable ranking from 14.15 to 95.24%. Among the 34 tested *Pseudomonas* strains, 4 strains of *P. fluorescens* (RH-36, RH-25, RH-79 and RH-37) showed high levels of antagonistic activity (Group A). Within this group, *P. fluorescens* biovar 1 (RH-36) ranked first causing 95.24% of juvenile mortality (Table 1 and 3). Strains RH-96, 70.15 BC and RH-77, 22.94 FG were found to be effective against root-lesion nematodes *Pratylenchus loosi*.

Table 1: In vitro antagonistic activities of 34 rhizosphere bacteria of tea plants against *Pratylenchus loosi* based on juvenile mortality.

<table>
<thead>
<tr>
<th>Strain Mortality (%)</th>
<th>Statistical group</th>
<th>Strain Mortality (%)</th>
<th>Statistical group</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH-36 95.24 A</td>
<td>Rh-77 26.37 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-25 84.98 A</td>
<td>Rh-33 25.00 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-79 91.90 A</td>
<td>Rh-15 20.00 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-96 70.15 BC</td>
<td>Rh-74 22.94 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-35 71.17 BC</td>
<td>Rh-12 28.87 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-37 87.44 A</td>
<td>Rh-11 22.28 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-19 63.10 C</td>
<td>Rh-76 22.17 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-39 82.62 AB</td>
<td>Rh-53 17.15 G</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-50 29.15 EFG</td>
<td>Rh-43 27.85 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-24 20.14 FG</td>
<td>Rh-85 42.95 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-60 26.04 FG</td>
<td>Rh-99 23.68 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-57 20.49 FG</td>
<td>Rh-28 33.83 DEF</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-31 20.01 FG</td>
<td>Rh-23 34.68 DEF</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-63 18.69 FG</td>
<td>Rh-48 44.45 D</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-41 22.86 FG</td>
<td>Rh-94 24.25 FG</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-78 21.43 FG</td>
<td>Rh-44 34.24 DEF</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
<tr>
<td>RH-16 25.47 FG</td>
<td>Control 15.63 G</td>
<td>RH-42 17.15 G</td>
<td>Rh-36 95.24 A</td>
</tr>
</tbody>
</table>

Data are means of three replications. Values followed by the same letters in each column are not significantly different (p=0.05).

Table 2: Characteristics of eight antagonistic *Pseudomonas* strains against *Pratylenchus loosi*

<table>
<thead>
<tr>
<th>Strain Mortality (%)</th>
<th>Statistical group</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH-96 95.24 A</td>
<td>A</td>
<td>Fluorescent pigment</td>
</tr>
<tr>
<td>RH-19 84.98 A</td>
<td>B</td>
<td>Oxidase</td>
</tr>
<tr>
<td>RH-79 91.90 A</td>
<td>B</td>
<td>Pectolytic activity</td>
</tr>
<tr>
<td>RH-36 70.15 BC</td>
<td>C</td>
<td>Nitrile to nitrite</td>
</tr>
<tr>
<td>RH-37 71.17 BC</td>
<td>C</td>
<td>Gelatin liquefaction</td>
</tr>
<tr>
<td>RH-19 63.10 C</td>
<td>C</td>
<td>Growth at 4°C</td>
</tr>
<tr>
<td>RH-39 57.04 FG</td>
<td>C</td>
<td>Growth at 4°C</td>
</tr>
<tr>
<td>RH-25 41.89 C</td>
<td>C</td>
<td>Growth at pH 5.7</td>
</tr>
<tr>
<td>RH-79 71.17 BC</td>
<td>D</td>
<td>Growth in 7% NaCl</td>
</tr>
<tr>
<td>RH-25 84.98 A</td>
<td>E</td>
<td>Growth on: Glucose</td>
</tr>
<tr>
<td>RH-19 63.10 C</td>
<td>F</td>
<td>D-galactose</td>
</tr>
<tr>
<td>RH-39 57.04 FG</td>
<td>F</td>
<td>Saccharate</td>
</tr>
<tr>
<td>RH-79 71.17 BC</td>
<td>F</td>
<td>Xylose</td>
</tr>
<tr>
<td>RH-25 84.98 A</td>
<td>G</td>
<td>Arabinose</td>
</tr>
<tr>
<td>RH-19 63.10 C</td>
<td>G</td>
<td>Sorbitol</td>
</tr>
<tr>
<td>RH-39 57.04 FG</td>
<td>G</td>
<td>Mannitol</td>
</tr>
<tr>
<td>RH-79 71.17 BC</td>
<td>G</td>
<td>Arginine</td>
</tr>
<tr>
<td>RH-25 84.98 A</td>
<td>H</td>
<td>L-tryptophan</td>
</tr>
</tbody>
</table>

+: Positive Reaction; -: Negative Reaction

Based on rates of nematicidal activities of the bacterial strains, 8 isolates were chosen for further characterization, based on Schaad et al. [35] (Table 2).
Based on statistical differences observed the isolates of *P. fluorescens* showed different effects, as these bacteria affected nematodes conferring them a different appearance and colors, ranging from brown, to black some specimens appearing also degenerated.

According to Westcott and Kluepfel [23], prior applications of *P. fluorescens* prevented egg hatchinh and affected juveniles due to exotoxin formation and disruption of normal cellular nematode metabolism. It is important to note that some of these bacteria induce plant systemic resistance for indirect control of soil pathogens, in addition to exhibited antibiosis [48].

Some bacterial species with nematicidal actuality have been applied for control of root-knot nematodes: among them *Streptomyces* spp., *Serratia* spp., *Bacillus* spp., *Azotobacter chroococcum*, *Rhizobium*, *Corynebacterium* and *Pseudomonas*. Eapen reported that treating pepper seedlings with isolates of *P. fluorescens* reduced the detrimental effects due to *Meloidogyne incognita*. Similarly, inocestation of wheat plants with *P. fluorescens* terminated in considerable lower nematode populations [49].

It is significant to point that rhizosphere of antagonistic plants may represent beneficial sources of potential biological control agents for nematodes [23] as suggested by prevention effects of *P. fluorescens* on *M. incognita*. However, this biovar proceeded from radish rhizosphere host for *Meloidogyne* spp. [48].

The results herein showed may represent a fraction of the effects related to the complex relationships among different types of microorganisms in the rhizosphere. PGPR species alone or with *Rhizobium* enhanced plant growth both in *M. javanica* and inoculated plants. Inoculation with *Rhizobium* spp. caused an increase in plant growth than the effect caused by any species of PGPR in nematode-inoculated plants. Combined use of *Rhizobium* with other species of PGPR also decreased galling and nematode propagation than their single inoculation [50].

All the antagonist bacteria are able to produce protease enzyme. Protease production is an effective mechanism for controlling nematodes.

Extracellular enzymes, including subtilisin-like serine protease, chitinase and collagenase, corresponding to the main chemical constituents of nematode cuticle and eggshell, have been reported to be involved in the infection as virulence factors [51]. In the interaction between pathogen and hosts, much experimental evidence supported that serine protease can destroy the integrity of cuticle to help penetration of pathogen [52,53] and initiate or trap nematophagous fungi [54].

These preliminary results provide a strong incentive for further experiments on the use of rhizosphere bacteria in the biocontrol of plant parasitic nematodes. If the potential of these strains is confirmed, they could be used in the future in greenhouse and field conditions, to develop alternative, low cost and environment friendly technologies.

Acknowledgement

The authors gratefully acknowledge Dr. A. Ciancio, CNR, IST, Protezione Plante-Sez. Di Bari, Italia for his kind editing, revising and other commentary on an early draft of this article.

References

Service, Commodities and Trade Division, Food and Agriculture Organization of the United Nations.

7. Seraji A (2007) Biology and population dynamics of tea root lesion nematode, Pratylenchus loosi, in Iran and the possibility its loss assessment on the host using epidemiological models. Tarbiat Modares University, Tehran, Iran.

