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Abstract
The MMP-13 inhibition activity of non-zinc-chelating compounds has been quantitatively analyzed in terms of 

chemometric descriptors. The statistically validated quantitative structure-activity relationship (QSAR) models provided 
rationales to explain the inhibition activity of these compounds. The descriptors, identified through combinatorial 
protocol in multiple linear regression (CP-MLR) analysis, have highlighted the role of 3-path Kier alpha-modified 
shape index (S3K), complementary information content index of 1-order neighborhood symmetry (CIC1), eigenvalue 
sum from mass weighted distance matrix (SEigm), lowest eigenvalue n. 6 of Burden matrix / weighted by atomic van 
der Waals volumes (BELv6) and by atomic polarizabilities (BELp6), 3-order topological charge index (GGI3) and the 
functionality, R--CR--R (C-025). From statistically validated models, it appeared that the descriptors S3K, BELv6, 
BELp6 and SEigm make positive contribution to activity and their higher values are conducive in improving the MMP-
13 inhibition activity of a compound. On the other hand, the descriptors CIC1, GGI3 and C-025 render detrimental 
effects to activity. Therefore, the absence of functionality, R--CR--R and lower values of descriptors CIC1 and GGI3 
would be advantageous. PLS analysis has further corroborated the dominance of the CP-MLR identified descriptors. 
Applicability domain analysis revealed that the suggested models have acceptable predictability. All the compounds 
are within the applicability domain of the proposed models and were evaluated correctly.
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Introduction
The matrix metalloproteinases (MMPs), a family of more than 

27 zinc- and calcium-containing enzymes, are involved in the 
degradation of extracellular matrix and tissue remodeling [1-3]. Of 
the collagenase family (MMP-1, MMP-8 and MMP-13) MMP-13, the 
most efficient type II collagen-degrading MMP [4,5], has now become 
an attractive therapeutic target because its inhibition reduces cartilage 
degradation associated with the progression of rheumatoid arthritis 
and osteoarthritis in animal models [6,7]. However, broad-spectrum 
MMP inhibitors exhibit a dose-limiting toxicity leading to side effects 
such as a painful joint stiffening (musculoskeletal syndrome, MSS) 
and inflammation [8-15]. It was suggested that MSS is caused by the 
inhibition of normal extracellular matrix turnover due to inhibition 
of other MMPs rather than MMP-13 [16-21]. At present, it is unclear 
which MMP isoforms may be involved [22] and to what extent they 
contribute to MSS. Thus, selective inhibition of MMP-13, devoid of 
MSS, may prove to be better therapeutic research area. 

MMPs having a tris (histidine)-bound zinc(II), acts as the catalytic 
site for the hydrolysis of substrate. Most MMP inhibitors achieve 
affinity through interaction with the catalytic zinc via a chelating moiety 
such as hydroxamic acid and by locating hydrophobic functionality 
in the S1′ pocket [8]. The S1′ pocket varies in length and amino acid 
sequence for different MMP isoforms. Such variations between MMP 
family members were, therefore, used to design MMP inhibitors with 
different selectivity profiles [23]. MMP-13 has additional region, 
S1′*, for inhibitor binding that has not been identified in other MMP 
isoforms. Most potent and selective MMP-13 inhibitors occupy both 
the S1′ and S1′* pockets only [24-27] and reduces the need to have a 
Zn-binding functionality.

In view of this, two new classes of potent and selective MMP-13 
inhibitors involving unique binding mode at the active site and not 
interacting with the catalytic zinc, have recently been reported [28,29]. 
The general structure of these classes is shown in figure 1. In the first 

series, the structural variations appeared at position R1 and in incision 
X while in the second series, positions R2 and R3 have been varied. 
These functional variations are given in Chart 1. 

The first series of compounds (1-23) were obtained through 
optimization with the aid of co-crystal structural information [28]. For 
this, the hit compound (1) was extended out from the active site into 
the S1′ pocket by adding an aryl group through two different linking 
functionalities. The aryl ring occupies the entrance to the S1′ pocket 
thus providing the opportunity to grow into the S1′ pocket to improve 
the potency against MMP-13 and the selectivity profile against other 
MMP isoforms. Depending on the linkage different trends for potency 
and selectivity for the respective aryl groups were observed. 
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Figure 1: General structure of non-zinc-chelating compounds.
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aIC50 represents the concentration of a compound to bring out 50% inhibition of MMP-13; expressed as pIC50 on molar basis; taken from reference [28,29].

Chart 1: Structural variations and MMP-13 inhibition activity of non-zinc-chelating compounds (see Figure 1 for general structure).



Medicinal chemistry
AlAmeri et al., Med chem 2012, 2:5

http://dx.doi.org/10.4172/2161-0444.1000125

Research Article Open Access

Med chem
ISSN: 2161-0444 Med chem, an open access journal

Volume 3(1): 168-178 (2013) - 172 

Citation: Sharma BK, Singh P (2013) Chemometric Descriptor Based QSAR Rationales for the MMP-13 Inhibition Activity of Non-Zinc-Chelating 
Compounds. Med chem 3: 168-178. doi:10.4172/2161-0444.1000134

To further improve potency against MMP-13, the second 
series (compounds 23-55) was explored to investigate alternative 
ways of interacting with the S1′ pocket [29]. The starting point of 
this optimization was the result of a hybridization of hit structure 
(compound 1) with another series of MMP-13 inhibitors based on an 
overlay of their crystal structures. In these analogues, the aryl groups 
was appended at the C-3 position of phenyl ring through a methyl amide 
linkage occupying the MMP S1′ pockets somewhat differently than the 
analogous functionality in first class of compounds. Additionally, the 
cyclohexyl group, able to bind in the S2′ pocket, was also replaced by 
other smaller substituents to modify the lipophilicity of some of the 
congeners. 

In both reported studies, the structure-activity relationships (SARs) 
were, however, targeted at the alteration of substituents at different 
positions and provided no rationale to reduce the trial-and-error 
factors. Hence, in the present communication a 2D-quantitative SAR 
(2D-QSAR) has been conducted to provide the rationale for drug-design 
and to explore the possible mechanism of the action. In the congeneric 
series, where a relative study is being carried out, the 2D-descriptors 
may play important role in deriving the significant correlations with 
biological activities of the compounds. The novelty and importance of 
a 2D-QSAR study is due to its simplicity for the calculations of different 
descriptors and their interpretation (in physical sense) to explain the 
inhibition actions of compounds at molecular level.

Material and Methods
Data-set

For present work the non-Zn-chelating compounds (Chart 1), 
along with their in vitro inhibition activity of MMP-13, have been taken 
from the literature [28,29]. The inhibition activity, IC50, represents the 
concentration of a compound to achieve 50% inhibition of MMP-13 
against type II collagen. The same is expressed as pIC50 on a molar basis 
and stand as the dependent descriptor for present quantitative analysis. 
For modeling purpose, the complete data-set was divided into training- 
and test-sets. The training-set was used to derive statistical significant 
models while the test-set, consisting nearly 25% of total compounds, 
was employed to validate such models. The selection of test-set 
compounds was made through SYSTAT [30] using the single linkage 
hierarchical cluster procedure involving the Euclidean distances of 
the inhibition activity, pIC50 values. The test-set compounds were 
selected from the generated cluster tree in such a way to keep them at 
a maximum possible distance from each other. In SYSTAT, by default, 
the normalized Euclidean distances are computed to join the objects of 
cluster. The normalized distances are root mean-squared distances. The 
single linkage uses distance between two closest members in clustering. 
It generates long clusters and provides scope to choose objects at 
intervals. Due to this reason, a single linkage clustering procedure was 
applied. 

Molecular descriptors

The structures of the compounds (Chart 1), under study, have been 
drawn in 2D ChemDraw [31] using the standard procedure. These 
structures were converted into 3D objects using the default conversion 
procedure implemented in the CS Chem3D Ultra. The generated 
3D-structures of the compounds were subjected to energy minimization 
in the MOPAC module, using the AM1 procedure for closed shell 
systems, implemented in the CS Chem3D Ultra. This will ensure a well 
defined conformer relationship across the compounds of the study. 
All these energy minimized structures of respective compounds have 
been ported to DRAGON software [32] for computing the descriptors 

corresponding to 0D-, 1D-, and 2D-classes. The combinatorial protocol 
in multiple linear regression (CP‐MLR) [33] analysis and partial least‐
squares (PLS) [34‐36] procedures have been used in the present work 
for developing QSAR models. A brief description of the computational 
procedure is given below.

Model development

The CP-MLR is a ‘filter’-based variable selection procedure for 
model development in QSAR studies [33]. Its procedural aspects and 
implementation are discussed in some of our recent publications [37-
42]. The thrust of this procedure is in its embedded ‘filters’. They are 
briefly as follows: filter-1 seeds the variables by way of limiting inter-
parameter correlations to predefined level (upper limit ≤ 0.79); filter-2 
controls the variables entry to a regression equation through t-values 
of coefficients (threshold value ≥ 2.0); filter-3 provides comparability 
of equations with different number of variables in terms of square root 
of adjusted multiple correlation coefficient of regression equation, 
r-bar; filter-4 estimates the consistency of the equation in terms of 
cross-validated r2 or q2 with leave-one-out (LOO) cross-validation as 
default option (threshold value 0.3 ≤ q2 ≤ 1.0). All these filters make 
the variable selection process efficient and lead to a unique solution. 
In order to collect the descriptors with higher information content 
and explanatory power, the threshold of filter-3 was successively 
incremented with increasing number of descriptors (per equation) by 
considering the r-bar value of the preceding optimum model as the 
new threshold for next generation. Furthermore, in order to discover 
any chance correlations associated with the models recognized in CP-
MLR, each cross-validated model has been put to a randomization 
test [43,44] by repeated randomization of the activity to ascertain the 
chance correlations, if any, associated with them. For this, every model 
has been subjected to 100 simulation runs with scrambled activity. The 
scrambled activity models with regression statistics better than or equal 
to that of the original activity model have been counted, to express the 
percent chance correlation of the model under scrutiny.

To support the findings, a partial least squares (PLS) analysis 
has been carried out on descriptors identified through CP-MLR. 
The study facilitates the development of a ‘single window’ structure‐
activity model and help to categorize the potentiality of identified 
descriptors in explaining the MMP-13 inhibition activity profiles of 
the compounds. It also gives an opportunity to make a comparison 
of the relative significance among the descriptors. The fraction 
contributions obtainable from the normalized regression coefficients 
of the descriptors allow this comparison within the modeled activity.

Applicability domain

The utility of a QSAR model is based on its accurate prediction 
ability for new compounds. A model is valid only within its training 
domain and new compounds must be assessed as belonging to the 
domain before the model is applied. The applicability domain is 
assessed by the leverage values for each compound [45,46]. The 
Williams plot (the plot of standardized residuals versus leverage values, 
h) can then be used for an immediate and simple graphical detection 
of both the response outliers (Y outliers) and structurally influential 
chemicals (X outliers) in the model. In this plot, the applicability 
domain is established inside a squared area within ± x (s.d.) and a 
leverage threshold h*. The threshold h* is generally fixed at 3(k + 1)/n 
(n is the number of training-set compounds and k is the number of 
model parameters) whereas x=2 or 3. Prediction must be considered 
unreliable for compounds with a high leverage value (h > h*). On the 
other hand, when the leverage value of a compound is lower than the 
threshold value, the probability of accordance between predicted and 
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observed values is as high as that for the training-set compounds.

Results and Discussion
QSAR results

For the compounds in chart 1, a total number of 495 descriptors 
belonging to 0D- to 2D- classes of DRAGON have been computed 
and were subjected to CP-MLR analysis. The preliminary assessment 
of complete data-set suggested that the lone compound 25, having a 
methyl group at R2 remained as an ‘outlier’. Similarly compound 15, due 
to its uncertain activity value, could not fit into the trend of remaining 
compounds of the series. Both these compounds were, therefore, 
ignored in the subsequent analyses. The remaining 53 compounds were 
further divided into training-set and test-set. Thirteen compounds 
(nearly 25% of total population) have been selected for test-set through 
SYSTAT. The identified test-set was then used for external validation 
of models derived from remaining forty compounds in the training-set. 
The squared correlation coefficient between the observed and predicted 
values of compounds from test-set, r2

Test, was calculated to explain 
the fraction of explained variance in the test-set which is not part of 
regression/model derivation. It is a measure of goodness of the derived 
model equation. A high r2

Test value is always good. But considering 
the stringency of test-set procedures, often r2

Test values in the range of 
0.500–0.600 are regarded as indicative predictive models. Following 
the strategy to explore only predictive models, CP-MLR resulted 
into 70 models in two descriptors, 99 models in three descriptors, 8 
models in four descriptors and 13 models in five descriptors. However, 
the highest significant of them, in statistical sense, are given through 
Equations (1-10).

pIC50 = 5.983 + 2.242(0.324)S3K + 0.874(0.228)nRORPh

n = 40, r = 0.764, s = 0.525, F = 25.915, q2
LOO = 0.505, q2

L5O = 0.511, r2
Test = 0.634             (1)                                                

pIC50 = 6.230 + 1.434(0.417)VAR + 1.141(0.241)N-075

n = 40, r = 0.736, s = 0.551, F = 21.870, q2
LOO = 0.470, q2

L5O = 0.474, r2
Test = 0.670             (2)                                                                                       

pIC50 = 6.598 + 3.470(0.415)S3K – 1.183(0.432)GGI3 – 1.541(0.323)C-025

n = 40, r = 0.846, s = 0.440, F = 30.112, q2
LOO = 0.629, q2

L5O = 0.616, r2
Test = 0.504             (3)                                                                                            

pIC50 = 6.549 + 2.513(0.317)S3K – 1.745(0.327)C-025 + 0.556(0.260)C-027

n = 40, r = 0.833, s = 0.456, F = 27.299, q2
LOO = 0.613, q2

L5O = 0.615, r2
Test = 0.553             (4)

pIC50 = 5.617 + 2.491(0.533)SEigm + 2.703(0.433)BELv6 – 3.152(0.648)GGI3 

              + 0.779(0.232)N-075

n = 40, r = 0.856, s = 0.432, F = 23.993, q2
LOO = 0.646, q2

L5O = 0.652, r2
Test = 0.751             (5)

pIC50 = 7.052 + 1.354(0.518)S3K – 0.515(0.224)PJI2 + 1.521(0.510)C-006 

            – 1.316(0.343)C-025

n = 40, r = 0.854, s = 0.435, F = 23.665, q2
LOO = 0.644, q2

L5O = 0.634, r2
Test= 0.658              (6)

pIC50 = 7.363 + 2.626(0.491)S3K – 1.629(0.553)CIC1 + 1.677(0.632)BELv6

            – 2.601(0.627)GGI3 – 0.967(0.356)C-025

n = 40, r = 0.880, s = 0.404, F = 23.260, q2
LOO = 0.661, q2

L5O = 0.648, r2
Test= 0.652              (7) 

pIC50 = 7.358 + 2.591(0.504)S3K – 1.570(0.541)CIC1 + 1.602(0.614)BELp6

            – 2.528(0.612)GGI3 – 0.957(0.359)C-025

n = 40, r = 0.879, s = 0.405, F =23.101, q2
LOO = 0.661, q2

L5O = 0.675, r2
Test = 0.675             (8)

pIC50 = 6.140 + 2.230(0.654)S3K + 1.551(0.650)SEigm + 1.304(0.607)BELp6

            – 2.483(0.679)GGI3 – 1.102(0.359)C-025

n = 40, r = 0.870, s = 0.418, F = 21.176, q2
LOO = 0.639, q2

L5O = 0.654, r2
Test = 0.620             (9) 

pIC50 = 6.115 + 2.267(0.642)S3K + 1.576(0.660)SEigm + 1.332(0.622)BELv6

            – 2.520(0.693)GGI3 – 1.120(0.356)C-025

n = 40, r = 0.870, s = 0.419, F = 21.161, q2
LOO = 0.637, q2

L5O = 0.618, r2
Test = 0.619           (10) 

Where n and F represent respectively the number of data points 
and the F-ratio between the variances of calculated and observed 
activities. The data within the parentheses are the standard errors 
associated with regression coefficients. In all above equations, the F -
values remained significant at 99% level. The indices q2

LOO and q2
L5O 

(> 0.5), except baseline Equation (2), have accounted for their internal 
robustness. For all above models the r2

Test values, obtained greater than 
0.5, specified that the selected test-set is fully accountable for their 
external validation. The descriptors, in all above models, have been 
scaled between the intervals 0 to 1 [47] to ensure that a descriptor will 
not dominate simply because it has larger or smaller pre-scaled value 
compared to the other descriptors. In this way, the scaled descriptors 
would have equal potential to influence the QSAR models.

The signs of the regression coefficients have indicated the direction 
of influence of explanatory variables in above models. The positive 
regression coefficient associated to a descriptor will augment the 
activity profile of a compound while the negative coefficient will cause 
detrimental effect to it.

Though Equations (1-10) emerged as significant predictive models 
but Equations (7-10) remained statistically more efficient. The later 
four models, involving five descriptors in each, could estimate up to 
77.44 percent of variance in observed activity of the compounds. In 
fact, a total number of 13 such models, sharing 15 descriptors among 
them, have been obtained through CP-MLR and only four of them, 
being most significant have been documented through Equation (7-10). 
The shared 15 descriptors along with their brief description, average 
regression coefficients and total incidences are given in table 1. Besides 
listed descriptors in table 1, the other identified descriptors PJI2 and 
VAR are from topological class, nRORPh is from functional class and 
C-027 is from atom centred fragment class. The PJI2 represents the 2D 
Petitjean shape index (Equation 6), VAR explains the variation in a 
molecular structure (Equation 2), nRORPh accounts for the number of 
ethers (aromatic) (Equation 1) and C-027 encodes the functionality R--
CH--X (Equation 4). The further discussion is, however, based on the 
highest significant Equations (7-10). The derived statistical parameters 
of these four models have indicated that their level of significance is 
almost the same. These models were, therefore, used to calculate the 
activity profiles of all the compounds and are included in table 2 for 
the sake of comparison with observed ones. A close agreement between 
them has been observed. Additionally, the graphical display, showing 
the variation of observed versus calculated activities is given in figure 2 
to insure the goodness of fit for each of these four models.

The participated descriptors in these models are S3K, CIC1, 
SEigm, BELv6, BELp6, GGI3 and C-025. These descriptors represent, 
respectively, 3-path Kier alpha-modified shape index, complementary 
information content index of 1-order neighbourhood symmetry, 
eigenvalue sum from mass weighted distance matrix, lowest eigenvalue 
n. 6 of Burden matrix / weighted by atomic van der Waals volumes (v) 
and by atomic polarizabilities (p), 3-order topological charge index and 
the functionality, R--CR--R. 

The S3K encodes information about the centrality of branching 
in the H-depleted molecular graph. The CIC1 measures the deviation 
of the information content pertaining to neighbourhood symmetry 
of 1-order (IC1) from its maximum value. The descriptor SEigm 
determines the sum of all the eigenvalues of atomic mass weighted 
distance matrix of the H-depleted molecular graph. 

From Equations (7-10), it appeared that the descriptors S3K, 
BELv6, BELp6 and SEigm make positive contribution to activity while 
the descriptors CIC1, GGI3 and C-025 render the negative role to 
it. Thus to explore more potential analogues of the series, the values 
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Cpd.
pIC50 (M)

Cpd.
pIC50 (M)

Obsd.
Calculated Eq.

Obsd.
Calculated Eq.

(7) (8) (9) (10) PLS (7)  (8)  (9)  (10) PLS
1 6.37 6.43 6.44 6.42 6.41 6.51 29 7.96 7.63 7.55 7.58 7.65 7.57
2 6.21 6.75 6.76 6.81 6.81 6.95 30 6.74 6.72 6.71 6.73 6.74 7.03
3 7.20 6.90 6.91 6.90 6.90 6.99 31 b 6.48 6.50 6.50 6.48 6.48 6.75
4b 7.24 7.51 7.45 7.50 7.54 7.29 32 6.51 6.95 6.96 7.02 7.02 6.53
5 7.51 7.55 7.54 7.49 7.49 7.30 33 b 7.62 7.62 7.62 7.56 7.56 7.52
6 b 6.74 7.16 7.20 7.16 7.12 7.02 34 7.14 7.29 7.29 7.27 7.28 7.47
7 7.06 7.65 7.64 7.41 7.40 7.36 35 6.85 7.24 7.28 7.24 7.20 7.26
8 7.77 7.36 7.41 7.44 7.41 7.28 36 8.10 7.89 7.80 7.83 7.90 7.55
9 6.61 6.90 6.91 6.78 6.77 7.17 37 8.10 7.79 7.80 7.76 7.76 7.74

10 b 5.81 6.91 6.91 6.83 6.83 6.65 38 b 7.38 7.47 7.50 7.47 7.44 7.50
11 5.22 6.13 6.13 6.20 6.21 5.92 39 7.51 7.45 7.48 7.46 7.43 7.50
12 b 6.34 6.78 6.75 7.09 7.12 6.74 40 8.00 7.98 8.00 7.77 7.74 7.92
13 6.32 5.88 5.89 6.41 6.42 6.25 41 b 8.40 7.78 7.79 7.74 7.74 7.73
14 6.54 5.92 5.91 5.65 5.65 6.03 42 b 8.05 8.07 8.11 8.48 8.46 8.17
15 c - - - - - - 43 7.00 6.81 6.84 6.81 6.78 7.27
16 6.66 6.23 6.22 6.34 6.36 6.19 44 7.54 7.49 7.47 7.51 7.52 7.55
17 7.49 7.29 7.28 7.26 7.28 7.20 45 7.57 7.73 7.75 7.93 7.91 7.75
18 b 8.22 7.36 7.36 7.53 7.54 8.08 46 8.52 8.15 8.17 8.24 8.23 8.17
19 7.40 7.96 7.97 8.18 8.18 8.11 47 b 8.15 8.20 8.26 8.50 8.46 8.39
20 8.22 8.17 8.18 8.05 8.04 7.92 48 8.22 8.00 7.93 8.00 8.06 7.83
21 7.60 8.27 8.26 8.28 8.28 8.23 49 b 7.55 7.42 7.44 7.51 7.50 7.04
22 8.70 8.27 8.27 8.12 8.11 8.27 50 8.70 8.26 8.29 8.65 8.64 8.57
23 8.40 7.84 7.86 7.92 7.91 8.14 51 7.60 7.87 7.83 7.78 7.81 8.05
24 7.00 7.33 7.32 7.27 7.28 6.96 52 8.05 8.33 8.31 8.09 8.10 8.06
25 d 5.48 7.43 7.43 7.30 7.31 7.06 53 7.44 7.72 7.73 7.58 7.57 7.31
26 6.96 6.73 6.74 6.69 6.68 6.58 54 8.70 8.47 8.52 8.67 8.64 8.80
27 b 6.85 6.94 6.94 6.87 6.86 6.78 55 8.30 8.11 8.14 7.86 7.83 8.31
28 7.12 7.46 7.43 7.51 7.53 7.32

aSee footnote under Chart 1, bcompounds in test set, ccompound with uncertain activity and not included in the study, doutlier compound in present study

Table 1: Observed and modeled MMP-13 inhibition activity of non-zinc-chelating compounds.

S. No. Descriptor Descriptor class Physical meaning Average regression
������������

1 S3K Topological 3-Path Kier alpha-modified 
shape index 2.135 (10)

2 CIC1 Topological Complementary information 
content index of 1-order neighborhood symmetry -1.949 (4)

3 SEigZ Topological Eigenvalue sum from Z weighted distance matrix (Barysz matrix) 1.733 (4)
4 SEigm Topological Eigenvalue sum from mass weighted distance matrix 1.811 (4)

5 BELv6 BCUT Lowest eigenvalue n. 6 of Burden matrix / weighted by atomic van der Waals 
volumes 1.861 (7)

6 BELe1 BCUT Lowest eigenvalue n. 1 of Burden matrix / weighted by atomic Sanderson 
electronegativities -0.854 (4)

7 BELp6 BCUT Lowest eigenvalue n. 6 of Burden matrix / weighted by atomic polarizabilities 1.382 (5)

8 GGI3 Galvez topological charge 
indices 3-Order topological charge index -2.524 (12)

9 ATS5m 2D-autocorrelation Broto-Moreau autocorrelation of 
a topological structure - lag 5 / weighted by atomic masses 1.765 (1)

10 MATS4m 2D-autocorrelation Moran autocorrelation - lag 4 / weighted by atomic masses 0.747 (1)
11 nCs Functional number of total secondary C(sp3) 1.379 (1)
12 nNR2 Functional number of tertiary amines (aliphatic) -0.741 (2)
13 C-006 Atom centered fragment CH2RX 1.198 (2)
14 C-025 Atom centered fragment R--CR--R -1.161 (7)
15 N-075 Atom centered fragment R--N--R / R--N--X 0.668 (1)

aThe descriptors are identified from the five parameter models, emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 2.0, filter-3 as 0.837, and filter-4 as 0.3 ≤ 
q2 ≤1.0 with a training set of 40 compounds. bThe average regression coefficient of the descriptor corresponding to all models and the total number of its incidence. The 
arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the models

Table 2: Identified descriptorsa along with their physical meaning, average regression coefficient and incidenceb, in modeling the MMP-13 inhibition activity.
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of prevalent descriptors of a given model may be decided according 
to delineated strategy. For example, Equation (7) has revealed that 
the higher values of descriptors S3K and BELv6, the lower (or more 
negative) value of descriptor CIC1 and absence of functionality R--CR-
-R, are all conducive in improving the MMP-13 inhibition activity of 
a compound. 

To corroborate the study further, a PLS analysis has also been 
carried out on 15 descriptors identified through CP-MLR and results 
are given in table 3. For this purpose, the descriptors have been 
autoscaled (zero mean and unit s.d.) to give each one of them equal 
weight in the analysis. In the PLS cross‐validation, four components 
have been found to be the optimum for these 15 descriptors and they 
explained 78% variance in the activity (r2 = 0.780). The MLR‐like PLS 
coefficients of these 15 descriptors are given in table 3. The calculated 
activity values of training- and test-set compounds are in close 
agreement to that of the observed ones and are listed in table 1. For the 
sake of comparison, the plot between observed and calculated activities 
(through PLS analysis) for the training- and test-set compounds is 
given in figure 2. Figure 3 shows a plot of the fraction contribution of 
normalized regression coefficients of these descriptors to the activity 
(Table 3). Actually, the 15 identified descriptors have shared 55 PLS 
models and the analysis could reveal four components (Table 3) as 
optimum to explain the MMP-13 inhibition activity. 

The top ten descriptors in decreasing order of significance are 
C-025, nNR2, MATS4m, GGI3, C-006, BELv6, BELp6, S3K, N-075, 
ATS5m (Table 3, figure 3). Among these descriptors, C-025, GGI3, 
C-006, BELv6, BELp6, S3K and N-075 are part of Equations discussed 
above and convey same inferences in PLS analysis. The negative 

contribution of functional group count descriptor nNR2 (number of 
tertiary aliphatic amine functionality in a molecule) advocates that a 
higher number of such functional groups are detrimental to activity. 
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Figure 2: Plot of observed versus caculated pIC50 values for training- and test-
set compounds.
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Figure 3: Plot of fraction contribution of MLR-like PLS coefficients (normalized) 
against 15 identified descriptors (Table 3) associated with MMP-13 inhibition 
activity of the compounds.

A: PLS equation
PLS components PLS coefficient (s.e.)a

Component-1 -0.234 (0.025)
Component-2 0.207 (0.039)
Component-3 -0.079 (0.039)
Component-4 0.149(0.072)

Constant 7.423
B: MLR-like PLS equation

S. No. Descriptor MLR-like coefficient (f.c.)b Order
1 S3K 0.500(0.077) 8
2 CIC1 -0.060(-0.008) 13
3 SEigZ 0.038(0.005) 14
4 SEigm 0.023(0.003) 15
5 BELv6 0.523(0.086) 6
6 BELe1 -0.268(-0.042) 12
7 BELp6 0.496(0.083) 7
8 GGI3 -0.623(-0.093) 4
9 ATS5m 0.414(0.060) 10
10 MATS4m 0.909(0.110) 3
11 nCs 0.313(0.044) 11
12 nNR2 -0.745(-0.114) 2
13 C-006 0.689(0.089) 5
14 C-025 -0.837(-0.122) 1
15 N-075 0.294(0.063) 9

Constant    6.276
C: PLS regression statistics Values 

n 40
r 0.883
s 0.392
F 31.081

q2
LOO 0.709

q2
L5O 0.710

r2
Test 0.771

aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-
like PLS equation in terms of descriptors for their original values; f.c. is fraction 
contribution of regression coefficient, computed from the normalized regression 
coefficients obtained from the autoscaled (zero mean and unit s.d.) data

Table 3: PLS and MLR-like PLS models from the descriptors of five parameter CP-
MLR models for MMP-13 inhibition activity. 
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The positive contribution of atomic mass weighted 2D-autocorrelation 
descriptors (Moran autocorrelation, MATS4m and Broto-Moreau 
autocorrelation, ATS5m) suggest that higher value of these are helpful 
in improving the activity profile. It is also observed that PLS model 
from the dataset devoid of 15 descriptors (Table 3) remained inferior 
in explaining the activity of the analogues.

Applicability domain

On analyzing the applicability domain (AD) in the Williams plot 
(Figure 3) of the model based on the whole data set (Table 4), one 
compound (25; Chart 1) has been identified as an obvious ‘outlier’ for 
the MMP-13 inhibitory activity if the limit of normal values for the 
Y outliers (response outliers) was set as 3×(standard deviation) units. 
None of the compounds was found to have leverage (h) values greater 
than the threshold leverage (h*). For both the training-set and test-set, 
the suggested model matches the high quality parameters with good 
fitting power and the capability of assessing external data. Furthermore, 

all of the compounds were within the applicability domain of the 
proposed model and were evaluated correctly (Figure 4).

Conclusion
The MMP-13 inhibition activity of non-zinc-chelating compounds 

has been quantitatively analyzed in terms of chemometric descriptors. 
The statistically validated quantitative structure-activity relationship 
(QSAR) models provided rationales to explain the inhibition activity 
of these congeners. The descriptors identified through combinatorial 
protocol in multiple linear regression (CP-MLR) analysis have 
highlighted the role of 3-path Kier alpha-modified shape index (S3K), 
complementary information content index of 1-order neighbourhood 
symmetry (CIC1), eigenvalue sum from mass weighted distance matrix 
(SEigm), lowest eigenvalue n. 6 of Burden matrix / weighted by atomic 
van der Waals volumes (BELv6) and by atomic polarizabilities (BELp6), 
3-order topological charge index (GGI3 and the functionality, R--CR-
-R (C-025). From statistically validated models, it appeared that the 
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Figure 4: Williams plot for the training-set and test- set for inhibition activity of MMP-13 for the compounds in Chart 1. The horizontal dotted line refers to the residual 
limit (± 3×standard deviation) and the vertical dotted line represents threshold leverage h* (= 0.439).  

Table 4: Models derived for the whole data set (n=54) for the MMP-13 inhibition activity in descriptors identified through CP-MLR. 

Model r s F q2
LOO Eq.

pIC50  = 7.264 + 2.303(0.489)S3K
            – 1.822(0.590)CIC1 + 2.187(0.601)BELv6
            – 2.456(0.662)GGI3 – 1.069(0.387)C-025

0.827 0.487 20.822 0.596 (7a)

pIC50 = 7.280 + 2.207(0.502)S3K 
            – 1.777(0.578)CIC1 + 2.140(0.585)BELp6
            – 2.384(0.645)GGI3 – 1.056(0.388)C-025

0.828 0.486 20.109 0.599 (8a)

pIC50 = 5.838 + 1.606(0.627)S3K 
           + 1.937(0.642)SEigm + 1.990(0.553)BELp6
           – 2.596(0.704)GGI3 – 1.063(0.390)C-025

0.826 0.487 20.717 0.587 (9a)

pIC50 = 5.794 + 1.692(0.614)S3K 
           + 1.969(0.653)SEigm + 2.018(0.567)BELv6
           – 2.655(0.720)GGI3 – 1.080(0.389)C-025

0.825 0.489 20.592 0.584 (10a)
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descriptors S3K, BELv6, BELp6 and SEigm make positive contribution 
to activity and their higher values are conducive in improving the 
MMP-13 inhibition activity of a compound. On the other hand, the 
descriptors CIC1, GGI3 and C-025 render detrimental effect to activity. 
Therefore, the absence of functionality, R--CR--R and lower values of 
descriptors CIC1 and GGI3 would be advantageous. Such guidelines 
may be helpful in exploring more potential analogues of the series. 
The statistics emerged from the test sets have validated the identified 
significant models. PLS analysis has further confirmed the dominance 
of the CP‐MLR identified descriptors. Applicability domain analysis 
revealed that the suggested models have acceptable predictability. All 
the compounds are within the applicability domain of the proposed 
models and were evaluated correctly.
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