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Circulating DNA & Cancer
Circulating DNA as a very ideal non-invasive biomarker can 

easily be isolated from human plasma, serum and other body fluids 
[1]. Small amounts of free DNA circulate in both healthy and diseased 
human plasma/serum, but increased concentrations of DNA present 
in the plasma of cancer patients and miscellaneous diseases and 
physiological conditions, such as pregnancy, tissue trauma, Systemic 
Lupus Erythematosus (SLE), rheumatoid arthritis, glomerulonephritis, 
pancreatitis, cholelithiasis, inflammatory bowel disease, peptic ulcer 
disease, hepatitis and esophagitis [2,3]. This review discusses the 
progress of circulating DNA research and its application in diagnosis, 
monitoring and therapeutic application of cancer. 

Categories of Circulating DNA
Circulating cell-free DNA: In 1948, only a few years after the 

demonstration of DNA is the material of inheritance, the circulating 
nucleic acids including both DNA and RNA, in human blood plasma 
were discovered by Mandel and Metais [4]. As they reported, the mean 
quantity of plasma circulating DNA was approximately 1mg/L, but the 
level in later researches varied from less than 10 ng/ml to more than 
1500 ng/ml [4-9].

It has been more than seventy years, but the origin of circulating 
cell-free DNA is still not clear. There are some possible origins 
of circulating cell-free DNA have been postulated, which include 
apoptosis, necrosis, active release of free circulating DNA by living cells 
[10-12] e.g. human lymphocytes have been shown to release DNA in 
the absence of any stimulation, which is regulated by a homeostatic 
mechanism [13,14]. Since significantly elevated levels of circulating 
cell-free DNA have been found in many studies and in patients with 
several cancer types, one has to consider that an undefined part of DNA 
present in the circulation is of non-tumor origin [15].

Circulating cell-surface-bound extracellular DNA: Circulating 
extracellular nucleic acids not only circulate in the plasma fraction of 
blood, but also are bound at the surface of blood cells. Tamkovich et al. 

[16] found that the main part (98%) of circulating DNA in the blood of
healthy donors is bound to the surface of erythrocytes and leukocytes
and the concentration of cell-surface-bound circulating DNA depends
on the patient’s gender. But in the blood of cancer patients, extracellular
nucleic acids were found in plasma and not at the [16,17] cell surface.
In patients with nonmalignant breast tumors, extracellular nucleic
acids were found both at the surface of blood cells and in plasma [16].

Rykova et al. [17] found that methylated DNA could be detected 
in the circulating extracellular DNA eluted from the surface of 
erythrocytes and leukocytes, even in the samples where no methylated 
DNA could be detected in plasma. Therefore, circulating extracellular 
DNA bound to cell surface was considered to be a valuable source of 
material for early noninvasive cancer diagnostics and monitoring. 

Potential Clinical Significance of Circulating DNA in 
Cancer

Circulating DNA is now utilized widely as a genetic biomarker in 
a variety of pathological conditions, mainly in cancerous conditions 
[18]. It is reported to be a useful biomarker for various types of cancer, 
such as lung, prostate, testicular and ovarian cancer [19-23]. It is used 
as a diagnostic tool and useful surrogate biomarker for therapeutic 
response [24,25]. Mutations, methylation, DNA integrity, microsatellite 
alterations and viral DNA have been detected in circulating cell-free 
DNA in blood of patients with cancer. In addition, changes in the levels 
of circulating nucleic acids have been associated with tumor burden 
and malignant progression [26]. 
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Abstract
Circulating extracellular nucleic acids, especially DNA, was discovered more than sixty years ago, but it is 

becoming hot just in the last two decades because it is now widely recognized as a very promising biomarker for the 
early diagnosis, monitoring, and evaluation of prognosis of cancer. In addition, compared with traditional surgical 
approaches and other biochemical tests, circulating DNA as a biomarker, owns many obvious advantages. It is 
easily accessible, reliable, reproducible and early detectable in cancer. It is also very sensitive and specific if cancer 
specific DNA alterations are tested instead of elevation of circulating DNA concentration. But the clinical application 
of this biomarker is still just limited to obstetrics and prenatal diagnosis. This review throws light on its history, current 
research update and potential clinical application in cancer diagnosis and management. In addition, major detection 
technologies of circulating DNA are summarized concisely and comprehensively.
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(a) Microsatellite Instability (MSI): it can be detected in free cell-free 
DNA, and may play an important role in cancer diagnosis and 
prediction of disease progression. Surprisingly, Schwarzenbach 
et al. [44] assessed the blood serum of 34 patients with primary 
and metastatic breast cancer and found that circulating tumor 
DNA dose not reflect the presence of tumor cells in blood or 
the level of tumor-associated protein markers, such as CA 15-3 
[44]. In Non-small Cell Lung Cancer (NSCLC), microsatellite 
alterations in tumor DNA have a potential prognostic role for 
disease recurrence. Ludovini et al. [45] found that microsatellite 
alterations occurred in at least one locus in NSCLC tumors. 
Significant associations was found between microsatellite 
alterations and squamous-cell histotype, and also significantly 
associated with recurrence of disease [45]. 

(b) Loss of Heterozygosity (LOH): Circulating tumor DNA markers 
for loss of heterozygosity appear to have prognostic significance 
when identified in primary tumors and serum and/or plasma 
from cancer patients [46]. LOH of DNA microsatellites occur 
commonly among various alleles at specific chromosome loci 
in melanoma, such as at 9p21, in primary melanomas. LOH 
on chromosome 6q occurs more frequently in thicker primary 
melanomas with more invasive tumor type. LOH on 10q has 
worse prognosis [47]. The presence of LOH in the serum of 
patients with advanced metastatic melanoma was associated 
with a poorer response to induction biochemotherapy and 
independently, with patient outcome. Circulating tumor 
microsatellites are serving as immediate determinants of 
disease progression and response to treatment [46]. LOH 
analysis of the cell-free DNA was also considered to be useful 
for the early diagnosis of mucosal malignant melanoma [48]. 

Rawnaq et al. [49] report that monitoring of loss of heterozygosity 
in serum microsatellite DNA among patients with gastrointestinal 
stromal tumors indicates tumor recurrence, and correlates with the 
tumor status [49]. Kakimoto et al. [50] did microsatellite analysis of 
serum DNA in patients with oral squamous cell carcinoma and found 
90% patients showed microsatellite alterations in serum DNA identical 
to those in the corresponding tumor DNA. They found that blood 
testing for circulating tumor genetic markers may provide valuable 
prognostic information and a guide for future therapy [50]. Takagi 
et al. [48] applied LOH analysis of cell-free DNA in the plasma of 17 
patients with mucosal malignant melanoma in the head and neck. Of 
the 17 patients, 4 patients had recurrence and/or metastasis, and all 4 
of these patients were found to have LOH in at least one or more loci 
for any region.

(4) Hypermethylation of tumor suppressor genes: DNA 
methylation is an epigenetic characteristic associated with 
the silencing of gene expression. DNA methylation is one of 
the most common molecular alterations in human neoplasia 
[51]. In cancer, aberrant DNA methylation is often found in 
the promoter region or at regulatory sites of genes which are 
involved in cell cycle regulation, growth or apoptosis [52].

Aberrant methylation of tumor suppressor genes is a more specific 
and common event in miscellaneous cancers, including breast cancer, 
pancreatic cancer, bladder cancer, lung cancer, and head and neck 
cancer, and so on [53]. While no single point mutation is common 
to every tumor type, aberrant DNA methylation patterns suggest that 
detecting disease early through observation of altered methylation 
patterns may be possible. Many tumor suppressors classically identified 
through mutation analyses, such as APC [54,55], BRCA1- breast 

Alterations in total cell-free circulating DNA levels: The 
circulating DNA concentration in normal blood plasma is low, 
however, it is significantly increased in blood of cancer patients [27,28].

Recently, IIZUKA etc. report that cell-free DNA levels were 
significantly higher in the sera from Hepatocarcinoma patients than 
in the sera from HCV carriers or the control subjects. They find 
that cell-free DNA levels were associated with the degree of tumor 
differentiation and size, but not related other factors, including TNM 
(tumor lymph nodes)- stage or levels of Alpha-Fetoprotein (AFP), etc. 
[29]. Hence cell-free DNA levels in HCV (Hepatitis C virus)-related 
HCC (Hepatocarcinoma) patients could be used as a marker for the 
detection of early-stage small HCCs [29]. Jiang et al. [30] studied 66 
AML (Acute Myeloid Leukemia) patients and 100 controls, and 20 
cases of solid tumors, they found the level of plasma cell-free DNA 
in AML patients were significantly higher than those in other groups 
and the level in male was significantly higher than female patients. It 
is concluded that the quantification of plasma DNA may be useful for 
evaluating therapeutic effects and monitoring relapse in AML patients 
[30]. 

Previous reports suggest that a higher concentration of circulating 
cell-free nucleic acids correlates with disease progression or a higher 
tumor burden of solid tumors [31]. 

Circulating DNA could also be used for both clinical prognostication 
and monitoring during follow-up because the levels of circulating DNA 
would decrease after successful anticancer therapy [26,30,32,33]. It 
was even reported that plasma DNA levels was closely associated with 
cancer stage in non-small-cell lung cancer, which is the most common 
type of lung cancer, mainly include adenocarcinoma, squamous cell 
carcinoma and large cell carcinoma. Patients with higher circulating 
DNA levels had significantly reduced probability of long-term survival. 
Similar findings were reported in leukemia patients [34,35]. But the test 
criteria, sensitivity and specificity prevented it from becoming a clinical 
routine application for decades [36]. 

Chromosomal Mutations in oncogenes and tumor suppressor 
genes: Cancer is characterized by an accumulation of genetic changes. 
Chromosomal abnormalities, including mutations, insertions, 
deletions, allelic losses of oncogenes and tumor suppressor genes, 
microsatellite alterations, and so on, have been discovered in cancer 
cell DNA [37]. 

Several studies have demonstrated that plasma or serum of cancer 
patients contains significant amounts of circulating cell-free DNA, 
which often carries mutations and epigenetic alterations identical to 
those detected in tumor tissues. It has the potential to serve as biomarker 
in cancer subjects [38]. The first mutational analyses performed on 
plasma cell-free DNA concentrated on the K-ras and N-ras oncogenes 
[39-42]. N-ras mutation was detected in patients with myelodys 
plastic syndrome and acute myelogenous leukemia. In patients with 
N-ras alterations, mutant DNA was always present in plasma DNA, 
though sometimes absent in the DNA of peripheral blood cells or bone 
marrow. Therefore, plasma cell-free DNA could be a better template 
than bone marrow or peripheral blood cells [39].

Microsatellite alterations: Microsatellites are stretches of DNA in 
which a short motif (usually 1-5 nucleotides long) is repeated 5-100 
times, which are at high risk for variations in the number of repeats. 
These kinds of errors are normally repaired by Mismatch Repair System 
(MMR). The MMR system is often defects in cancer, which are one of 
the important carcinogenesis [43]. Microsatellite alterations include 
microsatellite instability and loss of heterozygosity. 
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cancer type 1 susceptibility protein [7,56], cyclin-dependent kinase 
inhibitor 2A [57,58], etc.. It has been shown to be a promising marker 
to detecting cancers in early stage [59,60]. DNA hypomethylating 
reagents such as azacitidine and decitabine, known to be DNA Methyl 
Transferase inhibitors (DNMTi) have recently come to be considered 
as standard therapeutics for patients with aberrant methylation, like 
MDS (Myelodysplastic Syndrome) [51,61].

By detection of methylation status of p16 in HCC, cirrhosis, 
chronic hepatitis, primary biliary cirrhosis, autoimmune hepatitis, 
drug induced liver disease, fatty liver and normal liver tissues with 
methylation, specific polymerase chain reaction, Kaneto etc. found 
that aberrant methylation was detected in HCC (72.7%) and cirrhosis 
(29.4%) and chronic hepatitis (23.5%). All of which were positive for 
HBV (Hepatitis B virus) or HCV infections. In contrast, methylation 
was not detected in any of other samples from non-viral liver diseases. 
This indicates that the epigenetic change may be related to hepatitis 
virus infections. In addition, they found that all samples with promoter 
methylation showed loss of expression of p16. They also found that the 
majority of patients with methylation positive HCC had loss of p16 
expression with promoter methylation at the stage of chronic hepatitis 
without clinically detectable carcinoma. [62]. Similar results were also 
reported by a clinical study by Harder et al. [63]. Inactivation of p16 by 
hypermethylation is also an early event in some other cancers, including 
lung, colon, esophagus, and pancreas [64-67]. The accumulation of 
methylated cytosine in the 5’ CpG island of p16 is thought in a dose 
dependent manner because all methylation positive HCC showed 
complete loss of p16 expression while the majority of methylation 
positive cirrhosis and chronic hepatitis samples showed partial loss of 
expression. [62]. One possibility is that partial loss of p16 expression 
in cirrhosis and chronic hepatitis may be due to the heterogeneity 
of methylation, then progress to methylated alleles in HCC. Thus 
detection of p16 promoter methylation is a potential molecular 
biomarker to follow up patients with a high risk of developing HCC, 
such as those with HBV or HCV infections. [62].

APC and DAP-K (Death-associated protein kinase 1) 
promoter methylation were reported, that do not contribute to 
hepatocarcinogenesis and can’t be used as marker for HCC surveillance 
or detection. GSTP1(Glutathione S-transferase P) promoter may serve 
as good marker for HCC, just like p16 [63]. Villar etc reported that 
TP53 R249S mutation can be detected in serum DNA in patients with 
aflatoxin exposure and hepatitis B virus infection, but interestingly, 
this kind of mutation also varied with season, which is most common 
between April and July [68].

Mirza et al. [69] determined hypermethylation of ER-beta (Estrogen 
receptor beta) and RAR-beta2 in breast cancer patients and found 
that there were significant correlation between hypermethylation of 
ER-beta and RAR-beta2 in tumors and paired sera circulating DNA. 
In addition, concurrent hypermethylation was associated with poor 
overall survival. Therefore, they suggest that ER-beta and RAR-beta2 in 
serum circulating DNA could be used to predict invasive ductal breast 
carcinoma. Concurrent ER-beta and RAR-beta2 methylation as well as 
loss of ER-beta expression may serve as a prognostic marker [69].

DNA hypermethylation is also frequently found in Colorectal 
Cancer (CRC). Methylation of Helicase-like Transcription Factor 
(HLTF) and Hyperplastic Polyposis 1 (HPP1) are potential and 
Carcinoembryonic Antigen (CEA) is an established prognostic factor 
in serum of patients with CRC [70]. Hypermethylation of CpG islands 
is a common epigenetic DNA modification in human cancers leading 
to transcriptional silencing and can already be detected in early stages 

of carcinogenesis [71]. Several serum circulating DNA methylation 
markers have been described as potential screening markers for early 
stages of CRCs in asymptomatic patients, like NEUROG1, SEPT9, 
HLTF (Helicase-like transcription factor), HPP1/TPEF (Hyperplastic 
Polyposis 1/Transmembrane Protein Containing Epidermal Growth 
Factor and Follistatin Domains) [72-74].Especially HLTF and HPP1/
TPEF, which have been found specifically in patients with CRC, and 
significantly correlated with tumor size, metastatic disease and tumor 
stage. HLTF hypermethylation in serum is an independent predictor of 
disease recurrence [75,76].

Aberrations in the methylation status of noncoding genomic repeat 
DNA sequences and specific gene promoter region are also important 
epigenetic events in melanoma progression. Methylation profiling 
of melanoma has demonstrated inactivation of tumor-related genes 
by hypermethylation of CpG islands in the promoter region [77-82]. 
LINE-1 (Long Interspersed Nucleotide Element-1) hypomethylation 
and AIM1 (Absent in Melanoma-1) hypermethylation have prognostic 
utility in both melanoma patients’ tumors and serum. LINE-1 became 
progressively hypomethylated during melanoma progression. LINE-1 
hypomethylation level was higher in stage IV melanomas compared 
with other stages. Promoter hypermethylation of AIM1 downregulated 
AIM1 expression in natural killer-cell malignancies. AIM1 was 
significantly suppressed during melanoma progression. 

(5) Viral DNA: In some malignant tumors which related closely 
with specific virus, determination of circulating viral-DNA 
will be a good choice to anticipate, diagnose, and monitor 
relevant conditions. For example, Epstein-Barr virus (EBV) is 
a ubiquitous herpes-virus that is present within the malignant 
tissue of a variety of lymphomas, such as Classic Hodgkin 
Lymphoma (CHL), Post-Transplant Lympho Proliferative 
Disorder (PTLD), extra nodal NK-T cell lymphoma and 
nasopharyngeal carcinoma [83-87]. So the presence of EBV 
within the lymphomatous node and the close proximity of the 
lymphoid and blood circulation indicate potential as a highly 
tumor-specific biomarker [88]. In addition, the circulating cell-
free EBV-DNA (but not cell-associated EBV-DNA) reflects 
therapeutic response in EBV-associated lymphomas [88].

Technologies used to detect alterations of circulating Cell-
free DNA

Development of sensitive and specific approaches to detect 
circulating tumor DNA in bodily fluids may help early diagnosis/
monitor of cancer and leading to comprehensive revolution. 

Determination of circulating cell-free DNA or viral DNA levels: 
Various methods have been used to purify circulating cell-free DNA, 
including modified salting-out, chromatography resins, magnetic 
beads, or guanidium thiocyanate [89-91]. But recently, circulating 
DNA is more commonly purified with commercial kits, like QIAmp 96 
spin blood DNA extractions kit (Supplied by Qiagen), QIAamp DNA 
Blood Mini Kit (supplied by Qiagen), [30,92,93] BILATEST DNA Kit, 
Quant-iTTM DNA High-Sensitivity Assay kit and a Qubit fluorometer 
(supplied by Invitrogen) [5]. Quant-iTTM DNA High-Sensitivity 
Assay kit is known for its reliability and very good reproducibility 
[94]. Automated isolated systems like MagNa Pure LC are better than 
manual methods and produces even higher products of DNA/RNA. 
Quantitative Real-Time Polymerase Chain Reactions (RT-PCR) is 
the next step to amplify and quantify the circulating cell-free DNA of 
interest [9,88].
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Detection of circulating cell-surface-bound DNA: Because there 
are only weak interactions between extracellular DNA and cell surface, 
the extracellular cell-surface-bound DNA can be easily eluted with 
EDTA solution. The other part is tightly bound to cell-surface proteins, 
but can be eluted by mild trypsin treatment of the cells together with 
the polypeptides binding nucleic acids [96].

After cell-surface-bound extracellular DNA is eluted from the 
surface of erythrocytes and leukocytes with PBS-EDTA (Contain 
5mmol/L EDTA) solution and trypsin solutions, and then analyzed 
by methylation-specific PCR according to a modified protocol [97]. 
There is no correlation found between the ages of the patients and the 
concentrations of free or cell-surface-bound circulating DNA. But they 
found that total mean concentration of circulating cell-surface-bound 
DNA in blood was higher in healthy men (1030 ng/ml of blood) than in 
healthy women (430 ng/ml). There the sex of a patient should be taken 
into consideration when the concentration of cell-surface-bound DNA 
is determined for diagnostic purpose [17].

(3) Detection of genetic alterations of circulating cell-free DNA: 
The detection of tumor-specific DNA aberrations is the most 
specific approach to detect circulating DNA. 

Bisulphite sequencing is considered to be the “gold standard” in 
cytosine-methylation pattern studies. However, such strategies are 
both time and labor consuming [98]. The accuracy, speed, efficiency, 
and cost-effectiveness of circulating cell-free DNA sequencing have 
been improved dramatically. The most effective approach developed to 
date is based on massive parallel sequencing of plasma DNA molecules 
[99]. Such as that from 454 LifeSciences/Roche, allows high-throughput 
nucleotide sequencing of individual molecules [100-102]. The advent 
of massively parallel sequencing gives us a quantitative and powerful 
tool for studying DNA on a genome-wide level and allows us to identify 
tumor –associated chromosomal translocations in plasma. These new 
technologies are capable of sequencing lots of DNA, all at once, which 
means that many pieces of DNA are sequenced at the same time. This 
provides new modalities for molecular diagnostics [103].

Serre et al. developed a new MBD (Methyl CpG Binding Domain)-
isolated genome sequencing technique, which provided a high-
throughput and comprehensive survey of DNA methylation in the 
human genome. This could be a very useful technique in detection of 
methylation in circulating DNA in human bodily fluids. 

The number of mutant gene fragments is small compared to the 
number of normal circulating DNA fragments, making it difficult to 
detect and quantify them with sufficient sensitivity for meaningful 
clinical use. Recently a new extraordinarily sensitive mutation detection 
technology called BEA Ming was reported. BEA Ming stands for Beads, 
Emulsions, Amplification and Magnetics. It is to perform single-
molecule PCRs on magnetic beads in water-in-oil emulsions with the 
core process of transformation of a population of DNA molecules into 
a population of beads each coated with thousands of copies of identical 
sequence [104]. The kind of technology has unparalleled sensitivity 
(detect and enumerate mutant and wild-type DNA when present 
at ratios greater than 1:10,000) and selectivity (100-fold higher than 
conventional technologies) [105].

BEA Ming approach consists of four steps: (1) Real-time PCR 
is used to determine the number of gene fragment of interest in the 
plasma; (2) BEA Ming is used to convert the amplified plasma DNA 
into a population of beads; (3) The mutational status of the extended 
bead was determined by single base extension; (4) Flow cytometry is 
used to simultaneously measure the FITC, Cy5 and Phycoerythrin (PE) 

signals of individual beads. Diehl et et al. [103] analyzed 162 samples 
from 18 patients undergoing surgical therapy for primary or metastatic 
colorectal cancer, circulating tumor DNA was detected prior to therapy 
in 100% of patients. After surgical resection, the level of circulating 
DNA level fell reapidly [106].

Short Oligonucleotide Mass Analysis (SOMA) is the other methods 
for quantitative detection of mutations at selected positions [106]. 
In SOMA, small DNA fragments of interest are produced by PCR 
amplification and restriction digestion, and then characterized by 
HPLC-electrospray ionization mass spectrometry [38].

Future Prospects
Traditionally, tumor markers are proteins produced by tumor 

cells. The problem is only a subset of cancers would secrete specific 
proteins. Detections of circulating DNA or other nucleic acids will 
be a new generation of tumor markers because genetic aberrations 
are more frequently observed in cancers and directly involved in 
malignant development. In addition, it is a noninvasive biomarker that 
could accurately reflects status of conditions, which will be of great 
clinical benefit. Quantification of circulating DNA and identifying the 
frequencies of a variety of mutations, microsatellite alterations and 
status of gene promoter methylation are the main foci of research on 
circulating DNA. 

Tumor-derived circulating cell-free DNA will be a very good marker 
for the anticipation, early detection, diagnosis, evaluation of prognosis, 
and monitoring of recurrence of various malignant neoplasms. With 
further prospective studies with large patient numbers, circulating cell-
free DNA could be definitely clarified as part of the diagnostic screen in 
various human tumors. 

The lack of uniformity in presenting and interpreting quantitative 
research data as well as the virtual absence of information regarding the 
structure and function of circulating DNA are considered as the main 
obstacle of prevent circulating cell-free DNA becoming a recognized 
clinically practical biomarker. More research needs to be done to 
elucidate the basic aspects of circulating DNA, like its origin, function 
and significance of these nucleic acid molecules [18]. A well-recognized 
approach to quantify and analyze miscellaneous mutations in cancer 
should be set to better promote the clinical application of this very 
promising biomarker. This will also further benefit the treatment effect 
and survival of patients with various malignant neoplasms.
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