alexa Clinical Preparedness for Cytokine Storm Induced By the Highly Pathogenic H5N1 Influenza Virus | Open Access Journals
ISSN: 2153-0645
Journal of Pharmacogenomics & Pharmacoproteomics
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Clinical Preparedness for Cytokine Storm Induced By the Highly Pathogenic H5N1 Influenza Virus

Toshihisa Ishikawa*

RIKEN Yokohama Institute, RIKEN Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045, Japan

*Corresponding Author:
Toshihisa Ishikawa
RIKEN Yokohama Institute
RIKEN Omics Science Center
1-7-22 Suehiro-cho
Tsurumi-ku Yokohama 230-0045, Japan
Tel: +81-503-9222
Fax: +81-503-9216
E-mail: [email protected]

Received date: November 26, 2012; Accepted date: November 27, 2012; Published date: Decembet 01, 2012

Citation: Ishikawa T (2012) Clinical Preparedness for Cytokine Storm Induced By the Highly Pathogenic H5N1 Influenza Virus. J Pharmacogenomics Pharmacoproteomics 3:e131. doi: 10.4172/2153-0645.1000e131

Copyright: © 2012 Ishikawa T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Pharmacogenomics & Pharmacoproteomics


Since the first human case emerged in 1997 in Hong Kong, A (H5N1) viruses have been circulating among avian species and have spread throughout Asia, Europe, and Africa, with sporadic transmission to humans. Hitherto, genetic analysis of human-infected A (H5N1) virus has revealed that A (H5N1) virus directly transmitted from birds to human. Nevertheless, the possibility of human-to-human transmission of highly pathogenic avian influenza A (H5N1) viruses is becoming a fear for human health and society. Because humans lack immunity to influenza viruses possessing H5 hemaglutinin, the emergence of a transmittable H5-HA-possessing virus would probably cause a pandemic [1,2].

Until now, the most dramatic example of defining the pathogenicity of influenza A (H5N1) virus is the higher fatality rate of avian influenza epidemic (>50%) occurred in Southeast Asia in 1997, as compared with the pandemic caused by influenza virus A(H1N1) in 1918 (5-10%). The mortality of patients infected with the highly pathogenic influenza A (H5N1) virus increases up to about 60% more than three days after the onset of symptom [3]. Recent studies have shown that the high fatality rate of avian influenza virus infections is a consequence of an overactive inflammatory response and the severity of infection is closely related with virus-induced “cytokine storm” [4].

The cytokine storm is systemic expression of a healthy and vigorous immune system resulting in the release of more than 150 inflammatory mediators (cytokines, oxygen free radicals, and coagulation factors) [4]. Both pro-inflammatory cytokines (such as TNF-α, IL-1, and IL- 6) and anti-inflammatory cytokines (such as IL-10, and IL-1 receptor antagonist) are elevated in the serum, and the fierce and often lethal interplay of these cytokines takes place. The primary contributors to the cytokine storm are TNF-a and IL-6. The cytokine storm is caused by rapidly proliferating and highly activated T-cells or natural killer (NK) cells. These cells are activated by infected macrophages. In the absence of prompt medical intervention to suppress the cytokine storm, the lungs will suffer irreversible damage and result in death. Many of H5N1-infected patients develop Acute Respiratory Distress Syndrome (ARDS), and deaths can be resulted from multi-organ failure and not only from respiratory failure. Thus, the “cytokine” storm must be prevented or suppressed by the treatment, otherwise lethality can result.

It has been detected that, mutations of some genes (NS1, PB2, HA and NA) in the A (H5N1) virus are responsible for the cytokine storm, by increasing the viral replication rate, expending the tissue tropism, facilitating the systemic invasion and emerging of resistance against the host antiviral response. It has been shown that Glu92 and Ala149 mutations, and carboxyl-terminal ESEV/EPEV motif of NS1 protein have been implicated as determinants of virulence for the A (H5N1) virus [5]. In addition, Lys627 mutation in PB2 protein, polybasic amino acid mutations in the cleavage region of hemagglutinin (HA) polyprotein, and glycosylation and sialylation mutations in HA and NeuraMinidase (NA) proteins were found to enhance the immunemediated pathology of highly virulent strains of the A (H5N1) virus [1,5].

Early diagnosis and early therapeutic intervention are crucially required to improve the prognosis of the infectious disease. A recent study demonstrates that early initiation of antiviral treatment has a strong influence on the survival of patients with A (H5N1) infection. Kudo et al. [6] have most recently reported that renal replacement therapy using Polymyxin B-immobilized polystyrene fibers (PMX) and Continuous Hemodiafiltration (CHDF) could provide a practical tool to effectively treat H5N1-infected patients with acute respiratory distress syndrome (ARDS). PMX (Toray industries Inc, Tokyo, Japan) binds endotoxin and inflammatory cytokines in both in vitro and in vivo studies [7]. PMX hemoperfusion was applied to H5N1-infected patients sequentially using 3 columns at a flow rate of 100 ml/min for 3 days. Levels of IL-6, IL-8, and TNF- markedly decreased within 24 h after initiation of PMX hemoperfusion. Accordingly, the PaO2/FiO2 ratio increased to 128 at 24 h and to 203 at 3 days after initiation of PMX hemoperfusion. Thus, renal replacement therapy using PMX and Continuous Hemodiafiltration (CHDF) provided a practical tool to effectively treat H5N1-infected patients with Acute Respiratory Distress Syndrome (ARDS) [6].


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

Article Usage

  • Total views: 11499
  • [From(publication date):
    December-2013 - Jul 24, 2017]
  • Breakdown by view type
  • HTML page views : 7736
  • PDF downloads :3763

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version