Research Article

JCSB/Vol.1 2008

Comparison of the Virulence Factors and Analysis of Hypothetical Sequences of the Strains TIGR4, D39, G54 and R6 of *Streptococcus Pneumoniae*

R. Jothi, S. Parthasarathy* and K. Ganesan

Department of Bioinformatics, School of Life Sciences Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India

*Corresponding author : S. Parthasarathy, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024,Tamil Nadu, India, Tel: +91 94435 33095; Fax: +91 431 2407045; E-mail: bdupartha@gmail.com

Received October 21, 2008; Accepted November 19, 2008; Published December 26, 2008

Citation: Jothi R, Parthasarathy S, Ganesan K (2008) Comparison of the Virulence Factors and Analysis of Hypothetical Sequences of the Strains TIGR4, D39, G54 and R6 of *Streptococcus Pneumoniae*. JComputSciSystBiol 1: 103-118. doi:10.4172/jcsb.1000010

Copyright: © 2008 Jothi R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Whole genome sequences of the four strains of *Streptococcus pneumoniae*, encapsulated TIGR4, D39, G54 and nonencapsulated R6 are considered for the comparative study on genome features, whole genome pairwise alignment, gene role category, and virulence factors using relevant comparative genomics tools. The study of capsular polysaccharide synthesizing genes reveals that many cps genes are unique to TIGR4, which shows the high virulence nature of TIGR4. Further, the study on the other virulence factors such as pneumococcal surface protein A, autolysin, hyaluronate lyase, pneumolysin, neuraminidase B, and pneumococcal surface antigen A of TIGR4 are much related to those of the other three strains, and hence the virulence nature due to these factors among four strains seems to be similar. But it differs from neuraminidase A, choline binding protein A and immunoglobulin A1 protease. Also in the present study, 4 and 22 hypothetical protein sequences of TIGR4 and R6 respectively are predicted as virulence factors. Among those sequences, it is found that 8 hypothetical protein sequences with 7 different functional regions of R6 are related to other previously known virulence factors of TIGR4 and R6 of *S. pneumoniae*.

Keywords: Comparative genomics; *Streptococcus pneumoniae*; TIGR4; D39; G54; R6; Virulence factors; Hypothetical protein sequences

Abbreviations: CMR: Comprehensive Microbial Resource; CPS: Capsular Polysaccharide; PspA: Pneumococcal surface protein A; LytA: autolysin; Hyl: Hyaluronate lyase; Ply: Pneumolysin; NanA and NanB; Neuraminidases A and B; CbpA: Choline binding protein A; PsaA: Pneumococcal surface antigen A; IgA1: Immunoglobulin A1 protease

Introduction

The whole genome sequences of bacteria of closely related species or strains are providing new avenues of investigation for the further understanding of microbial diversity, pathogenesis, host-parasite interaction, evolution, etc. through a comparative analysis of their genomes. *Streptococcus pneumoniae*, commonly *pneumococcus* (Dowson, 2004; Gregory and DeSalle, 2005), a human pathogen, causes life threatening diseases like pneumoniae, bacteremia, meningitis, sepsis, and otitis media. Genome sequencing of four *S. pneumoniae* strains, namely, TIGR4, D39, G54 and R6 have been completed and genome sequencing of other 14 strains are ongoing. G54 genome sequence is not yet added in GenBank but it is inbuilt in Comprehensive Microbial Resource (CMR) and D39 genome sequence is available in GenBank but not in CMR. TIGR4, a clinical isolate, is encapsulated and highly virulent and many of its virulence fac-

Research Article

JCSB/Vol.1 2008

tors have been studied (Tettelin et al., 2001). D39, the encapsulated and virulent strain (Lanie et al., 2007), was used by Avery, Macleod, and McCarty (Avery et al., 1979) in their landmark study on the role of DNA as the genetic material. G54 is an encapsulated clinical strain type 19F (Dopazo et al., 2001). R6, a derivative of the serotype 2 clinical isolate D39, is nonencapsulated and avirulent. The genes encoding many virulence factors are present in R6 genome in addition to the genes of capsular biosynthesis (Hoskins et al., 2001).

Many types of comparative studies (Tettelin et al., 2001; Lanie et al., 2007; Hoskins et al., 2001; AlonsoDeVelasco et al., 1995; Brückner et al., 2004; Ferretti et al., 2004; Silva et al., 2006) have already been carried out in Streptococcus strains on various aspects. The preliminary comparative analysis (Jothi et al., 2007) of the whole genomes of both the encapsulated TIGR4 and nonencapsulated R6 strains of S. pneumoniae provided some insights into the high virulence nature of TIGR4. This present study summarizes specifically how the whole genomes of the four strains, namely, TIGR4, D39, G54 and R6 of S. pneumoniae differ from each other by their genome features, genome diversity, gene role category and virulence factors. Comparison of the virulence factors among these strains can provide further insight into any strain uniqueness with relevance to virulence nature and can stimulate new approaches into disease prevention and treatment.

S. pneumoniae has two surface layers outside the plasma membrane, namely, cell wall and capsule. The cell wall has triple-layered peptidoglycan that holds the capsular and cell wall polysaccharides, and also few proteins. The capsule completely covers the inner structure of S. pneumoniae. The cell wall polysaccharide is common to all serotypes of S. pneumoniae, but the chemical structure of the capsular polysaccharide is serotype-specific (AlonsoDeVelasco et al., 1995). After Avery's experiment (Avery et al., 1979), the capsule has long been recognized as the major virulence factor of S. pneumoniae. Experimental proof for this was provided by the difference in 50% lethal dose between encapsulated and nonencapsulated strains. Encapsulated strains were found (AlonsoDeVelasco et al., 1995) to be at least 10⁵ times more virulent than strains lacking the capsule. Certain proteins in S. pneumoniae like pneumococcal surface protein A (PspA), autolysin (LytA), hyaluronate lyase (Hyl), pneumolysin (Ply), neuraminidases A and B (NanA and NanB), choline binding protein A (CbpA), pneumococcal surface antigen A (PsaA) and immunoglobulin A1 (IgA1) protease are important virulence factors (AlonsoDeVelasco et al., 1995; Jedrzejas, 2001; Rigden et al., 2003) and these could be used as potential vaccine candidates. The preliminary identification of the surface proteins and virulence factors of *S. pneumoniae* were done by computational analysis of its genome sequences (Tettelin and Hollingshead, 2004; Gregory and DeSalle, 2005; Tettelin et al., 2001; Hoskins et al., 2001) and continued in several subsequent studies (Brückner et al., 2004; Polissi et al., 1998; Wizemann et al., 2001). Strains of *S. pneumoniae* are now resistant to commonly prescribed antibiotics, such as, penicillin, macrolides and fluoroquinolones (Tettelin et al., 2001). Because of the multidrug resistance nature of the *S. pneumoniae* strains, we need a deeper understanding of the virulence factors, for that the comparative genomics approach may provide more insight.

At present, only 70 % of the genes in any given genome can be predicted with reasonable confidence (Bork, 2000). The remaining genes are either hypothetical (do not have any known homolog) or conserved hypothetical (homologous to genes of unknown function), because it is unclear whether they encode actual proteins. The large quantity of hypothetical protein sequences in completely sequenced genomes of organisms makes their study an enormous task. Characterization of these genes or proteins of unknown function is generally recognized as an essential step towards fully understanding the biology of the pathogenic organism and for potential targets. Few studies (Galperin and Koonin, 2004; Brown, 2005; Sivashankari and Shanmughavel, 2006) have already been carried out on hypothetical sequences. In the present study, hypothetical protein sequences of the strains TIGR4 and R6 of S. pneumoniae are analyzed to find their virulence nature using VirulentPred. Among those sequences, it is also analyzed how far the hypothetical protein sequences are related to other previously known virulence factors of TIGR4 and R6 of S. pneumoniae.

Materials and methods

Various analysis of the whole genomes of the four strains, namely, TIGR4, D39, G54 and R6 of *S. pneumoniae* like the whole genome alignment, comparison of gene role categories, finding the location of the virulence factors in the genome and comparison of virulence regions are carried out using the appropriate bioinformatics software tools.

Sequence Retrieval and Whole Genome Pairwise Alignment

The complete genome sequences and the list of annotated gene and protein sequences of TIGR4, D39 and R6 are retrieved from the NCBI – FTP server (ftp:// ftp.ncbi.nih.gov/genomes). We used the run-mummer3 program available in the standalone MUMmer 3.20 (http://

Volume 1: 103-118 (2008) -104

Research Article

JCSB/Vol.1 2008 Comparison of the Genome Features of Four Strains

mummer.sourceforge.net/) and its built-in mummerplot for obtaining the whole genome pairwise alignment of S. pneumoniae strains TIGR4, D39, and R6 in different combinations. MUMmer at Comprehensive Microbial Resource (CMR) is used for the whole genome pairwise alignment of the strains TIGR4, G54 and R6 in different combinations.

Comparison of the Role Category of Genes and Sequence Analysis

The tool in CMR database (http://cmr.tigr.org/tigr-scripts/ CMR/ CmrHomePage.cgi), the role category piechart is used for the genome features and functional role category comparison of the whole genomes of TIGR4, G54 and R6. Bacterial Annotation System (BASys - http:// wishart.biology.ualberta.ca/basys) - A web server for automated bacterial genome annotation is used to know the role category for three strains TIGR4, D39 and R6, whose whole genomes are already available in it. From the prediction server of the Center for Biological Sequence Analysis (CBS - http://www.cbs.dtu.dk/services), the Genome Atlas is used for the analysis of repeats of S. pneumoniae. The sequences of various virulence factors, which are taken for our study, have been verified by using the virulence factors database (http://www.mgc.ac.cn/VFs). BioEdit (http:// www.mbio.ncsu.edu/BioEdit/bioedit.html) is used to compute sequence composition of the genomes and genes. Further, LALIGN (http://www.ch.embnet.org/software/ LALIGN form.html) is used for the pairwise global alignment of the gene sequences of the strains of S. pneumoniae.

Functional Annotation of Hypothetical Sequences

VirulentPred (http://bioinfo.icgeb.res.in/virulent) is a SVM (Support Vector Machine) based method to predict bacterial virulent protein sequences, which can be used to screen virulent proteins in proteomes. In the present study the above tool is used to analyse the hypothetical sequences of the strains TIGR4 and R6 of S. pneumoniae. From the proteome of TIRG4 and R6 of S. pneumoniae, all unannotated hypothetical protein sequences are retrieved using PERL script and those sequences are used as data set for virulence factor prediction.

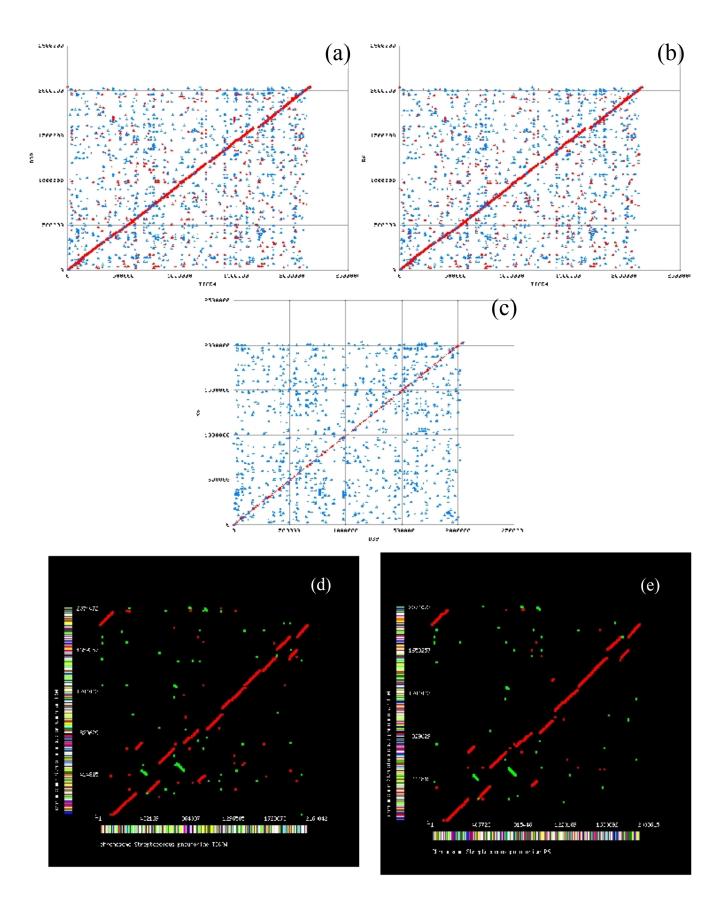
Results and Discussion

Comparative genomics and in silico studies have begun to reveal insights into gene and protein functions of many organisms. Here, we compare the genomes of the strains TIGR4, D39, G54 and R6 of S. pneumoniae using the appropriate tools for whole genome comparison and the results are discussed below.

of S. Pneumoniae Table 1 summarizes the general information about the genomes including statistics of genes of these four strains,

obtained and compiled from CMR and NCBI web servers. The genome sizes of these four strains range between 2 Mb and 2.16 Mb (c.f. Sl.No.2 of Table1). Among these four strains, D39 is the smallest and TIGR4 is the largest based on genome size. The nucleotide base (A, T, G, C, AT and GC) compositions of four strains show that the strains have low GC (~40%) genomes. The number of genes encoding for proteins of these four strains ranges between 1914 and 2234 (c.f. Sl.No.3 of Table1). Of the total base pairs of four genomes, approximately 85 - 87% of base pairs (bps) are involved in coding and the remaining are non-coding or junk DNA. The number of genes involved in RNA synthesis (structural RNA, tRNA, and rRNA) is more or less similar in all strains. Finally, by comparing the global and local repeats of TIGR4 and R6 using CBS web server, it is evident that both the repeats are high in TIGR4 than in R6 (c.f. Sl.No.4 of Table1) and this may be related to the duplicated regions of the chromosome (Gregory and DeSalle, 2005).

Comparison of Whole Genome Pairwise Alignments


The whole genome pairwise alignments of the strains TIGR4, D39 and R6 of S. pneumoniae (whose sequence data are available at NCBI) are obtained using the standalone version of MUMmer and the results are plotted using its built-in mummerplot. The whole genome pairwise alignments of the strains TIGR4, G54 and R6 are obtained using CMR, where these sequences are available, and the five possible alignments are shown in Figure 1(a) - (e). Generally, the genomes of prokaryotes are very dynamic, with insertions, deletions, inversions, and translocations being commonly observed among related species or even between different strains of the same species (Gregory and DeSalle, 2005; Hughes, 2000). The net result is that the particular complement of genes and their order along the chromosome are not typically conserved over evolutionary time. In some cases, genes that are grouped into operons in one species may be dispersed throughout the genome in others. We find similar results, while we analyzed the genomes of four strains of S. pneumoniae. In particular, we find that there exists a stability of the gene order in the genome pairs TIGR4 vs. D39 and TIGR4 vs. R6 and they are shown by fact that most of the points lie along the diagonal in Figures 1a and 1b. The results (Figures 1a and 1b) indicate that the stability of gene order of D39 vs. R6 must also be relatively high and it is shown in Figure 1c. This also confirms the

Volume 1: 103-118 (2008) -105 ISSN:0974-7230 JCSB, an open access journal

Jour	rnal of Comput		x Systems Bic	logy - Op JCSB/Vol.	en Access 1 2008
R6	Eli Lilly AE007317.1 NC_003098 Circular dsDNA 1 2001/10/03	2.03 Mb 615270 (30.18 %) 613689 (30.10 %) 406018 (19.91 %) 403638 (19.79 %) 60.28 39.71	2038615 bp 1761157 bp (86.38%) 2043 1313 (64.26%) 73 58 12	5.70 5.40 5.80 4.20	pneumoniae using CMR,
G54	Geneva Biomedical Research Institute NA NA Circular dsDNA 31 contigs Not yet included in NCBI	2.07Mb 628663 (30.31%) 624751 (30.10%) 404611 (19.50%) 414824 (20.00%) 60.43 39.50	2074072 bp 1761820 bp (84.94%) 2047 1343 (65.60%) NA 51 5	CBS tool does not have the whole genome data of D39 and G54	d nonencapsulated R6 of <i>S</i> .
D39	TIGR CP000410.1 NC_008533 Circular dsDNA 1 2006/10/24	2Mb 617717 (30.19%) 615968 (30.10%) 407646 (19.92%) 404784 (19.78%) 60.29 33.71	2046115 bp NA 1914 NA 73 58 12	CBS tool does not data of	rIGR4, D39 & G54 an
TIGR4	TIGR AE005672.1 NC_003028 Circular dsDNA 1 2001/10/03	2.16 Mb 653880 (30.26%) 649168 (30.04%) 430998 (19.95%) 426796 (19.75%) 60.30 39.69	2160842 bp 1885091 bp (87.23%) 2234 1506 (67.41%) 70 58 12	8.30 7.00 6.40 4.30	of the strains, encapsulated 1
Genome Information and Features	Sequencing center GenBank accession Refseq Topology Molecule Contig Completed date	Genome size (sequence length) Number of A Number of T Number of G Number of C No. of A+T (%) No. of G+C (%)	Total size of DNA molecule Number of coding bases Number of genes Structural RNAs tRNA genes rRNA genes	% global direct repeats % global inverted repeats % local direct repeats % local inverted repeats	NA – Not Available Table 1: Comparison of the genome features of the strains, encapsulated TIGR4, D39 & G54 and nonencapsulated R6 of <i>S. pneumoniae</i> using CMR, Bioedit and CBS tools
SI. No.	-	N	ĸ	4	

Volume 1: 103-118 (2008) -106

JCSB/Vol.1 2008

Figure 1: Whole genome alignment of a) TIGR4 vs. D39; b) TIGR4 vs. R6; c) D39 vs. R6 using stand-alone MUMmer; Whole genome alignment of d) TIGR4 vs. G54 and e) R6 vs. G54 using built-in MUMmer of CMR, which show plasticity and stability in gene order between two strains.

J Comput Sci Syst Biol

JCSB/Vol.1 2008

fact that R6 is the derivative of D39. The whole genome pairwise alignments of TIGR4 vs. G54 and that of R6 vs. G54 do not show such a high degree of the stability of gene order compared to the above results (for D39 strain) and are shown in Figures 1d and 1e, respectively.

Many of the gene and protein sequences among these strains are approximately the same and this is not surprising as all the strains occupy the same niche in the human respiratory system. The small differences might have arisen after the divergence of these strains from other evolutionary lineages for adaptations in their host. This increases greatly in pathogens and appears to be associated with the ability to infect eukaryotes, perhaps reflecting a mechanism for evading host immune defenses and the unique genes may be located in a plasticity zone.

Since G54 genome sequence is not available at NCBI web server and D39 genome is not available at CMR server, we could not get the whole genome alignment for D39 vs. G54. However, we are able to predict the whole genome pairwise alignment of D39 vs. G54, based on the earlier result. As the Figures 1d and 1e are similar, it indicates that the alignment of D39 vs. G54 must also possess similar structure. This prediction may be confirmed if the whole genome sequence of G54 is made available in NCBI or genome sequence of D39 is included in CMR.

Comparison of Capsular Polysaccharide Synthesizing Genes

We have compared the capsular polysaccharide (cps) synthesizing genes of the strains TIGR4, D39, G54 and R6 of *S. pneumoniae* and the results are shown in Table 2. There are 15 different cps genes in TIGR4, 7 in D39 and 9 in G54 and only one in R6. Their gene IDs, G+C percentage, protein length, gene length and gene coordinates are shown in Table 2. On comparison, it is estimated that 5 cps genes of TIGR4 (gil15900275-cps4A, gil15900276-cps4B, gil15900278-cps4D, gil15900046-cps-ptv & gil15901666-cps-ptv) are related to that of D39 (gil116516963-cps2A, gil116516159-cpsB, gil116517023-cps2D, gil116517199-cps and gil116516120-cps-ptv). All the cps genes of D39 are present in TIGR4 except gil116516773-cps2E and gil116516341-cps-ptv.

Between TIGR4 and G54, 6 cps genes are related (gil15900275-cps4A, gil15900276-cps4B, gil15900277-cps4C, gil15900278-cps4D, gil15900046-cps-ptv & gil15901666-cps-ptv of TIGR4 with NT05SP0190-cps4A, NT05SP0191-cps4B, NT05SP0192-cps4C, NT05SP0193-cps4D, NT05SP2185-cps9E & NT05SP1650-cps7G of

G54). Likewise, between D39 and G54, 5 cps genes are related (gil116516963-cps2A, gil116516159-cpsB, gil116517023-cps2D, gil116517199-cps and gil116516120-cps-ptv of D39 with NT05SP0190-cps4A, NT05SP0191-cps4B, NT05SP0192-cps4C, NT05SP2185-cps9E & NT05SP1650-cps7G of G54), but gil116516773-cps2E and gil116516341-cps-ptv of D39 are not present in G54. Similarly, it is interesting to note that the only cps gene of R6 (gil15902136-capD), has 99.8 % identity with the gene gil16517199-cps of D39 and 99.5 % identity with the gene NT05SP2185 of G54. All the above results are in support of the Avery's statement (Avery et al., 1979) that the capsule is responsible for pathogenecity.

From similar analysis, we have also noted that the genes, gil15900279-cps4E, gil15900280-cps4F, gil15900281-cps4G, gil15900282-cps4H, gil15900286-cps4I, gil15900287-cps4J, gil15900288-cps4K, gil15900289-cps4L and gil15900788-cps-ptv are unique to TIGR4. Similarly, the genes gil116516773-cps2E and gil116516341-cps-ptv are unique to D39 strain. In the same way, the genes NT05SP0198, NT05SP0202 and NT05SP1909 are unique to the strain G54. But in R6, the only cps gene gil15902136-capD is common to all other strains (Table 2). As the TIGR4 strain has more number of cps genes than other strains it indicates the high virulence nature of TIGR4. Further, the results also explain that the virulence nature is lesser in D39 and G54 strains, and very less in R6 compared to TIGR4.

Though all the cps genes of TIGR4 are not present in D39, G54 and R6 strains, they are also pathogenic. Therefore, to know the other virulence factors in addition to cps genes, we consider the other genes of the strains from the gene role category aspect.

Comparison of the Role Category of Genes

Role category of genes of the different strains are compared by using the two different tools, namely, i. CMR – role category pie chart for TIGR4, G54 and R6 (Table 3) and ii. Bacterial Annotation System (BASys) for the strains TIGR4, D39 and R6, based on the availability of genome sequences. The genes responsible for biosynthesis of various proteins (Sl. Nos. 1-9 of Table 3) of TIGR4 are nearly same as in G54 and R6, which suggests the basic complement of proteins required for certain cellular processes. But the genes responsible for the biosynthesis of some other proteins (Sl.Nos.10-23 of Table 3) of TIGR4 are notably different from that of G54 and R6. This suggests that, these proteins are important for strain uniqueness and they may be involved in variations in pathogenesis among the strains

Research Article

Research Article

JCSB/Vol.1 2008

Strain name	Gene ID and Name	G+C (%)	Protein length (aa)	Gene length (bp)	Gene coordinates	Comparison with cps of other strains in %Identity
	gi 15900275-cps4A	38.32	481	1446	320077 - 321522	96.0 - D39-gi 116516963-cps2A 94.0 - G54-NT05SP0190-cps4A
	gi 15900276-cps4B	41.98	243	732	321524 - 322255	97.9 - D39-gi 116516159-cpsB 86.4 - G54-NT05SP0191-cps4B
	gi 15900277-cps4C gi 15900278- cps4D	40.29 34.21	230 227	693 684	322264 - 322956 322966 - 323649	85.7 - G54-NT05SP0192-cps4C 79.6 - D39-gi 116517023-cps2D 93.8 - G54-NT05SP0193-cps4D
TIGR4	gi 15900279-cps4E gi 15900280-cps4F gi 15900281-cps4G gi 15900282-cps4H	33.49 33.17 27.84 31.36	211 409 358 372	636 1230 1077 1119	323990 - 324625 324634 - 325863 325868 - 326944 326937 - 328055	
	gi 15900286-cps4I gi 15900287-cps4J gi 15900288-cps4K gi 15900289-cps4L	36.70 38.46 36.19 35.02	365 351 409 394	1098 1056 1230 1185	331774 - 332871 332875 - 333930 334030 - 335259 335260 - 336444	
	gi 15900046-cps-ptv*	42.21	616	1851	104668 - 106518	99.8 - D39-gi 116517199-cps 99.7 - G54-NT05SP2185-cps9E 99.8 - R6-gi 15902136-capD
	gi 15900788-cps-ptv gi 15901666-cps-ptv	28.79 43.93	455 408	1368 1227	859370 - 860737 1746322 - 1747548	 99.0 - D39-gi 116516120-cps-ptv 96.6 - G54-NT05SP1650-cps7G
D39	gi 116516963-cps2A gi 116516159-cpsB gi 116517023-cps2D gi 116516773-cps2E gi 116517199-cps	38.45 41.53 39.06 37.79 42.19	481 243 226 455 616	1446 732 681 1368 1851	313744 - 315189 315191 - 315922 316633 - 317313 317328 - 318695 99217 - 101067	96.3 - G54-NT05SP0190-cps4A 85.2 - G54-NT05SP0191-cps4B 79.3 - G54-NT05SP0192-cps4C 99.5 - G54-NT05SP2185-cps9E
	gi 116516341-cps-ptv gi 116516120-cps-ptv	30.28 44.09	119 408	360 1227	815811 - 816170 1633887 - 1635113	100 - R6-gi 15902136-capD 97.1 - G54- NT05SP1650-cps7G
G54	NT05SP0190-cps4A NT05SP0191-cps4B NT05SP0192-cps4C NT05SP0193-cps4D NT05SP0198-cps19AI NT05SP0202-cps23FP NT05SP1650-cps7G NT05SP1909-cps3E NT05SP2185-cps9E	38.28 37.56 38.09 34.64 29.82 41.70 43.77 43.63 42.46	484 243 230 227 445 198 417 436 616	1455 732 693 684 1338 597 1254 1311 1851	165975 - 167429 167431 - 168162 168171 - 168863 168873 - 169556 173388 - 174725 178230 - 178826 1493392 - 1492139 1726013 - 1727323 1999333 - 2001183	 99.5 - R6-gi 15902136-capD
R6	gi 15902136-capD	42.26	616	1851	99217 - 101067	

Table 2: Comparison of capsular polysaccharide (cps) synthesizing genes of four strains of *S. pneumoniae*. Each cps is compared with all cps sequences of other three strains using LALIGN; all the cps sequences considered fall under the Role Category 11 (Cell Envelope) of CMR.

of *S. pneumoniae*. The percentage values given for a particular role category in Table 3 is specific to the gene involved in that category only and does not represent the overall gene percentage. For example, autolysin (SP1937) of TIGR4 is categorized into two role categories such as cell envelope and cellular processes (Sl.Nos.11 and 12 of Table 3) and the percentage given is specific to the respective categories.

J Comput Sci Syst Biol

Volume 1: 103-118 (2008) -109

Jou	rnal	of	(Coi	nţ	ou	ter	: S	cie	eno				Sy Arti		te	m	. S .	Bi	ol	0	gy J	- O] CSB/	p <mark>en</mark> Vol.1	Ac 200	cess 8
R6 No of genes - out of 2219(%)	7 (2.11%)	-		9 (3.10%) 3 (5.76%)			2 (5.49%) 1 (1.39%)			-	-	-	Ū		((8.8/%)		9 (23.3%) 5 (2 87%)			-	<u>N</u>	3 (1.17%)				gene role category
2 5	47	104	ю С	69 128	61		122 31	236		100	96	76	e e e e	0 0	19/		910 90	60 742	~	201	51	56	_			These
G54 No of genes - out of 2047(%)	(2.34%)	-	_	(3.71%) (6.3%)			(5.71%) (1.41%)	5 E		(4.64%)	\smile	-	-	<u> </u>		-	(14.1%) (2 16%)	(2.30%)	-	Ŭ	<u></u>	(1.12%)				e role category.
No	48	98	37	76 129	58		117 29	218		95	131	91	87		185	922	105 105	47	4	167	72	23				eir gene
TIGR4 No of genes - out of 2234(%)	42 (1.88%)	92 (4.11%)	23 (1.02%)		54		121 (5.41%) 29 (1.29%)	267 (11.90%)		Ŭ	Ŭ		11 (0.49%)	\sim	<u> </u>		302 (13.50%) 134 (5.00%)			$\overline{}$	174 (7.78%)	0 (%0) 0				and R6 strains of <i>S. pneumoniae</i> based on their gene role category. These gene role category cory Pie-chart.
Gene Role Category	<u>Similar proteins (common proteins)</u> Biosynthesis of cofactors, prosthetic groups, and carriers	Fatty acid and phospholipids metabolism	Protein tate	Protein synthesis Purines pyrimidines pucleosides	and nucleotides	Regulatory functions	Transcription Transport and binding proteins		<u>Dissimilar proteins (unique proteins)</u>	Amino acid biosynthesis	Cell envelope	Cellular processes	Central intermediary metabolism	Disrupted reading trame	Energy metabolism	Pypotnetical proteins	Voliserved itypotrietical proteiris Mobile and extra chromosomal Flement functions		Signal transduction	Unclassified	Unknown function	Viral functions	(* Manually counted).			Table 3: Distribution of genes in the whole genomes of TIGR4, G54 and R6 strains data are retrieved and compiled from CMR using its Gene Role Category Pie-chart
s. S.	. .	5.	ი.	4 rč			7.8			10.	11.	12.	13.	14. 14.	15.	1 0 1	18.		20.	21.	22.	23.	(* M5			Tabl data a

Volume 1: 103-118 (2008) -110

ISSN:0974-7230 JCSB, an open access journal

2234 431 302 Nil 174 907 - 40.6% sent in all comparison 1792 ast one comparison 1792 ast one comparison 1792 ast one comparison 1792 1772 Sp_0464 Sp_0464 Sp_0464 Sp_0464 Sp_0464 Sp_0464 Sp_0464 Sp_0464 Sp_0464 Sp_0464 Sp_0465 Sp_0465 Sp_0465 Sp_0466 Sp_046645 Sp	sedneuces	Role categories	TIGR4	G54	R6	
Hypothetical 431 236 171 Unclassified 174 72 519 Unclassified 174 72 201 Unclassified 174 72 201 Unclassified 1792 1930 201 Unclassified 1792 1810 201 Number of Present in all comparison 1946 1943 1965 Number of Present in aut least one comparison 1946 1943 1965 Number of Present in aut of the comparison 1946 1943 1965 Number of Present in aut of the comparison 1946 1943 1965 Number of Present in aut of the comparison 1946 1943 1965 Number of Present in aut of the comparison 1946 1943 1965 Number of Present in aut least one comparison 1946 104 78 Uncload Nin 11 Nin 11 Uncload Nin Nin Nin Nin Uncload Ninthowin 158 104		Total no. of genes	2234	2047	2219	
Conserved hypothetical 302 301 519 Unclassified Unclassified 167 201 Unclassified Unclassified 167 201 Unclassified Unclassified 187.9% 342- Unclassified Number of sequences Present in all comparison 1792 182.4 1810 Number of resent in any of the comparison 1792 182.4 1810 Number of present in any of the comparison 1792 182.4 1810 Number of present in any of the comparison 1792 182.4 1810 Not present in any of the comparison molecule 288 10.4 78 Not present in any of the comparison molecule 288 10.4 78 Unclassified Nil Nil Nil Nil	Whole	Hypothetical	431	236	171	
Unclassified Initial 174 72 201 Duknown 907 - 40.6% 776 - 37.9% 942 Number of sequences Present in all comparison 1792 1824 1810 Number of sequences Present in all comparison 1792 1824 1810 Number of Present in at least one comparison 1792 1943 1965 Number of Present in any of the comparison 1746 1943 1810 Number of Present in any of the comparison 1746 1943 1965 Molecules Number of Present in any of the comparison 174 78 Not present in any of the comparison 178 104 78 Unique genes) 138 113 111 111 Unique genes) 138 133 114 111 Unknown 138 136 165.33 165.35 Conserved hypothetical 11 11 11 11 Unknown 138 138 174.36% 165.53 Canserified Nin 138 15	genome	Conserved hypothetical	302	301	519	
Unknown 174 72 51 Total 907 - 40.6% 776 - 37.9% 942- Number of sequences Present in all comparison 1792 1824 1810 Number of sequences Present in all comparison 1792 1945 1965 Number of Present in at least one comparison 1792 1824 1810 Number of Present in at least one comparison 1792 1824 1810 Number of Present in at least one comparison 1946 1943 1965 Not present in any of the comparison molecule 188 104 78 Unique genes) Unique genes) 111 Nil Nil Unique genes) Nil Nil Nil Nil Unknown 13 13 11 Nil Nil Unknown 13 13 50.0352-cps44 - - Total 78 0355-cps44 - - - Total Nil Nil Nil Nil Nil Total 138 <th0< td=""><td>)</td><td>Unclassified</td><td>Nil</td><td>167</td><td>201</td><td></td></th0<>)	Unclassified	Nil	167	201	
Total 907 – 40.6% 776 – 37.9% 942- 942 Number of sequences Present in all comparison molecules 1792 1824 1810 Number of Present in at least one comparison molecule 1946 1943 1965 Number of Present in any of the comparison molecule 1946 1943 1965 Not present in any of the comparison molecule 288 1004 78 Not present in any of the comparison molecule 288 104 78 Unique genes) 158 178 8 104 78 Unclassified Nii 13 Nii Nii Nii Nii Unknown 13 Nii Nii Nii Nii Nii Nii Unknown 189 0550-cps4F - - - - - Type 2 capsule locus 7 59 0355-cps4F - - - - - - Type 2 capsule locus 59 0462 - - - - - - - <td></td> <td>Unknown</td> <td>174</td> <td>72</td> <td>51</td> <td></td>		Unknown	174	72	51	
Number of sequences Present in all comparison molecules 1792 1824 Number of Present in at least one comparison molecule 1946 1943 Number of Present in at least one comparison molecule 1946 1943 Not present in any of the comparison molecule 288 104 Not present in any of the comparison molecule 288 104 Unique genes) Unique genes) 13 47 Suborthetical Nil Nil Nil Unknown 13 13 11 Unknown 13 13 11 Unknown 189 58 58 Capsular polysaccharide biosynthesis protein 59_0359-cps4F - Type 2 capsule locus - - - Type 2 capsule locus - - - Subordet Sp_0463 - - - Should for the former shift Sp_0463 - - - Should for the surface anchor family protein Sp_0463 - - - Should for the surface anchor family protein Sp_0463 - - - -		Total	Т	ا س	2 I	
moleculesmolecules19461943Number of Present in at least one comparison19461943MoleculeNot present in any of the comparison molecule288104Not present in any of the comparison molecule288104Unique genes)Not present in any of the comparison molecule288104Unique genes)Unique genes)15847Unique genes)NiNiNiUnclassifiedNiNiNiUnknown131311Unknown1318958Capsular polysaccharide biosynthesis proteinSp 0351-cps4F1Type 2 capsule locus551417SCell wall surface anchor family proteinSp 04631Sp 04645141711NanA, authentic frameshiftSp 046311NanA, authentic frameshiftSp 163311Sh 16A1 profesae. decenerateSp 163311		Number of sequences Present in all comparison	1792	1824	1810	
Number of Present in at least one comparison molecule 1946 1943 Not present in any of the comparison molecule 288 104 Not present in any of the comparison molecule 288 104 Unique genes) Hypothetical 17 Unclassified Nil 13 11 Unknown 13 11 Nil Jotal Capsular polysaccharide biosynthesis protein 8 0351-cps4F - S Capsular polysaccharide biosynthesis protein 8 0359-cps4K - - S Capsular polysaccharide biosynthesis protein Sp_0359-cps4K - - - S Cell wall surface anchor family protein Sp_0463 - - - - S Cell wall surface anchor family protein Sp_0463 -		molecules				
molecule 288 104 Not present in any of the comparison molecule 288 104 Not present in any of the comparison molecule 288 104 Ninique genes) 158 47 Hypothetical 13 11 Unclassified Nii Nii Unknown 13 Nii Inknown 13 Nii Inknown 13 Nii Inknown 13 Nii Inctaal Nii Nii Inknown 189 58 Capsular polysaccharide biosynthesis protein 50_0359-cps4K - Type 2 capsule locus - - - Sp_0357-cps4K - - - Type 2 capsule locus 50_0359-cps4K - - Sp_0463 - - - - Sp_0464 - - - - NanA, authentic frameshift 50_0463 - - NanA, authentic frameshift 50_0463 - - Sp_0464 - - - - NanA, authentic frameshift 50_0463 - - NanA, authentic frameshift 50_0463 - - <t< td=""><td>Number of</td><td>Number of Present in at least one comparison</td><td>1946</td><td>1943</td><td>1965</td><td></td></t<>	Number of	Number of Present in at least one comparison	1946	1943	1965	
Not present in any of the comparison molecule (unique genes) 288 104 (unique genes) Hypothetical 158 47 Hypothetical 13 11 11 Unknown 13 11 11 Unknown 13 11 11 Vinlassified Nii Nii Nii Unknown 189 58 58 Capsular polysaccharide biosynthesis protein Sp_0351-cps4F 17 Sp_0355-cps4G 189 58 58 Type 2 capsule locus 59_0359-cps4G 1 1 Sp_0463 59_0463 1 1 1 Sp_0464 1 1 1 1 1 NanA, authentic frameshift Sp_0463 1 1 1 1 NanA, authentic frameshift Sp_0463 1 1 1 1 1 NanA, authentic frameshift Sp_0463 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	common and	molecule				
(unique genes) 158 47 Hypothetical 158 47 Conserved hypothetical 13 11 Unknown 13 11 Unknown Nii Nii Unknown Nii Nii Capsular polysaccharide biosynthesis protein Sp. 0351-cps4F 1 Capsular polysaccharide biosynthesis protein Sp. 0353-cps4G 1 Res Type 2 capsule locus 1 1 Sp. 0462 Sp. 0463 1 1 Sp. 0463 Sp. 0463 1 1 AnA, authentic frameshift Sp. 0463 1 1 Sp. 0463 Sp. 0463 1 1 Sp. 0463 Sp. 0463 1 1 NaA, authentic frameshift Sp. 0463 1 1 <	unique genes.	Not present in any of the comparison molecule	288	104	78	
Hypothetical 158 47 Genes Unclassified 13 47 Unknown Unknown 13 11 Unknown Nil Nil Nil Unknown 189 58 47 Capsular polysaccharide biosynthesis protein Sp.0351-cps4F - Ce Type 2 capsule locus - - Genes Cell wall surface anchor family protein Sp.0359-cps4K - Sp.0463 Sp.0463 - - Sp.0464 - - - Sp.0464 - - - AnnA, authentic frameshift Sp.0464 - - NanA, authentic frameshift Sp.0464 - - Sp.0464 Sp.1772 - - - Sp.0464 Sp.1772 - - - NanA, authentic frameshift Sp.0464 - - Sp.0464 Sp.1417 - - - Sp.0464 Sp.1417 - - - NanA, authentic frameshift Sp.1417 - -		(unique genes)				
genes Conserved hypothetical 13 11 genes Unclassified Nil Nil Nil Unknown Total 189 58 58 Capsular polysaccharide biosynthesis protein Sp_0351-cps4F 174.36%) 74.36%) Ce Type 2 capsule locus genes Cell wall surface anchor family protein Sp_0463 PspC Sp_0463		Hypothetical	158	47	68	
genes Unclassified Nil Nil Unknown Unknown 189 58 Total 189 58 Capsular polysaccharide biosynthesis protein Sp. 0351-cps4F 1 Capsular polysaccharide biosynthesis protein Sp. 0359-cps4G 1 Cell wall surface anchor family protein Sp. 0359-cps4K 1 Sp. 0462 1 1 Sp. 0463 1 1 Sp. 0463 1 1 Sp. 0464 1 1 Sp. 0464 1 1 AnA, authentic frameshift Sp. 1417 1 Sp. 1772 Sp. 1417 1 NanA, authentic frameshift Sp. 1693 1		Conserved hypothetical	13	11	Nil	
Unknown Nill Nill Total Nill Nill Total Nill Capsular polysaccharide biosynthesis protein Sp_0351-cps4F Capsular polysaccharide biosynthesis protein Sp_0355-cps4G Cee Type 2 capsule locus Cell wall surface anchor family protein Sp_0462 Sp_0463 Sp_0463 Sp_0464 Sp_0463 Sp_0464 Sp_01772 Sp_0464 Sp_01772 Sp_0464 Sp_01772 Sp_0463 Sp_01477 Oxdease, decenerate Sp_0155 IoA1 protease, decenerate	Unique denes	Unclassified	Nil	Nil	Nil	Re
Total 189 58 Capsular polysaccharide biosynthesis protein Sp_0351-cps4F : Capsular polysaccharide biosynthesis protein Sp_0351-cps4F : Capsular polysaccharide biosynthesis protein Sp_0352-cps4G : Cet Type 2 capsule locus : : Cell wall surface anchor family protein Sp_0462 : : Sp_0463 : : : : ManA, authentic frameshift Sp_0463 : : : ManA, authentic frameshift Sp_1693 : : : : ManA, authentic frameshift : : : : : : ManA, authentic frameshift : : : : : : ManA, authentic frameshift :		Unknown	Nil	Nil	Ni	sear
Capsular polysaccharide biosynthesis protein Sp_0351-cps4F - Capsular polysaccharide biosynthesis protein Sp_0352-cps4G - Capsular polysaccharide biosynthesis protein Sp_0359-cps4G - Cell wall surface anchor family protein Sp_0462 - Sp_0463 - - PspC Sp_0463 - PspC Sp_01417 - NanA, authentic frameshift Sp_1633 - IdA1 protease. decenerate Sp_1633 -		Total	189	58	68	rch
Capsular polysaccharide biosynthesis protein Sp_0351-cps4F - Capsular polysaccharide biosynthesis protein Sp_0352-cps4F - Cet Type 2 capsule locus - - Genes Cell wall surface anchor family protein Sp_0462 - Sp_0463 Sp_0464 - - Sp_0464 - - - Sp_01772 Sp_0464 - - NanA, authentic frameshift Sp_1772 - - IgA1 protease. decenerate Sp_1693 - -			(65.63%)	(74.36%)	(65.39%)	Ar
Ce Type 2 capsule locus Sp_0352-cps4G - genes Cell wall surface anchor family protein Sp_0463 - genes Cell wall surface anchor family protein Sp_0463 - NanA, authentic frameshift Sp_1772 - - RepC Sp_163 - - - RepC Sp_0464 - - - - RepC Sp_1772 Sp_1417 -		Capsular polysaccharide biosynthesis protein	Sp 0351-cps4F			ticl
Ce Type 2 capsule locus Sp_0359-cps4K genes Cell wall surface anchor family protein Sp_0462 PspC Sp_0464 <td></td> <td></td> <td>Sp 0352-cps4G</td> <td>1</td> <td>1</td> <td>e</td>			Sp 0352-cps4G	1	1	e
Ce Type 2 capsule locus <th< td=""><td></td><td></td><td>Sp_0359-cps4K</td><td>:</td><td></td><td></td></th<>			Sp_0359-cps4K	:		
genes Cell wall surface anchor family protein Cell wall surface anchor family protein Sp_0462 Sp_0463 Sp_0464 PspC Sp_0464 NanA, authentic frameshift Sp_1772 Daft Drotease. decenerate Sp_1693	Virulence	Type 2 capsule locus		1	Spr0315	
genes Cell wall surface anchor family protein Sp_0462 Sp_0463 Sp_0464 Sp_0464 PspC Sp_01772 NanA, authentic frameshift Sp_1693 IgA1 protease. decenerate Sp_1693	factors		1		Spr0317	
Cell wall surface anchor family proteinSp_0462Sp_0463Sp_0464Sp_0464Sp_0464PspCSp_1772NanA, authentic frameshiftSp_1693IdA1 protease. degenerateSp_2155	amond		:	1	Spr0319	
PspC Sp_0463 PspC Sp_1772 NanA, authentic frameshift Sp_1417 NanA, authentic frameshift Sp_1693 IdA1 protease. degenerate Sp_2155	unique genes	Cell wall surface anchor family protein	Sp 0462	ł		
Sp_0464	-	-	Sp_0463	1	1	
, authentic frameshift Sp_ Sp_ orotease, degenerate			Sp_0464	1	1	J
, authentic frameshift Sp_ Srotease. degenerate			Sp_1772	1	1	CS
<u>.</u> 0 0		PspC	Sp 1417	1	1	B/V
So		NanA, authentic frameshift		:	1	ol.1
		IgA1 protease, degenerate	Sp_2155	1	1	20

ISSN:0974-7230 JCSB, an open access journal

Volume 1: 103-118 (2008) -111

Journal of Computer Science & Systems Biology Open Access

Research Article

JCSB/Vol.1 2008

The number of genes which are responsible for pathogenesis in the strains TIGR4, G54 and R6 are manually counted from CMR gene role category (sub role categories pathogenesis, toxin production and resistance) and found to be 101 (4.52 %), 47 (2.30 %) and 42 (1.89 %) respectively (Sl.No.19 of Table 3). TIGR4 has many pathogenic factors and it is highly virulent and G54 and R6 strains have approximately 50% of the pathogenic factors of TIGR4. Mobile and extra chromosomal elements comprise a significant fraction of the genome as with the 134 genes (5.99 %) in TIGR4, 71 (3.46 %) in G54 and 86 genes (3.87 %) in R6 (Sl.No.18 of Table 3). Generally transposons encode genes for antibiotic resistance (Gregory and DeSalle, 2005); therefore from our results, it is evident that the antibiotic resistance may be relatively higher in TIGR4 than the strains G54 and R6.

From the results of the comparative study on TIGR4, D39 and R6, using BASys server, we find that most of the values are more or less similar. But, there is a higher percentage for unknown functions in the strains TIGR4, D39 and G54, which indicates that the reason for the differences may also be hidden in the unknown genes or proteins (data not shown).

From Table 3, the number of hypothetical, conserved hypothetical, unclassified and unknown genes of whole genomes of the strains TIGR4, G54 and R6 are noted and is shown in Table 4. Nearly 37 - 42 % of genes are of unknown type and it shows that these sequences have to be annotated and assigned functions of which some of them may be responsible for the virulence nature. Using the multigenome homology comparison tool, which is available at CMR, the numbers of unique genes in TIGR4, G54 and R6 are found to be 288, 104 and 78, respectively (Table 4).

The unique genes of the strains TIGR4, G54 and R6 themselves have many hypothetical, conserved hypothetical, unknown and unclassified sequences and their percentage ranges from 65 to 74, thus the other possible differences among the strains may be known by studying the above said gene sequences. As far as the virulence factors are concerned, in the unique genes of the strain TIGR4, 3 capsular polysaccharide biosynthesis proteins (Sp_0351 (cps4F), Sp_0352 (cps4G) and Sp_0359 (cps4K)), 4 cell wall surface anchor family proteins (Sp_0462, Sp_0463, Sp_0464 and Sp_1772), a PspC protein (Sp_1417), a NanA protein (SP_1693) and a IgA1 protease (SP_2155) are there. In the case of R6, it has three proteins of type 2 capsule locus (Spr0315, Spr0317 and Spr0319) in its unique genes. But the strain G54 does not have such virulence factors in its unique genes (Table 4). The above result shows the high

virulence nature of TIGR4 and it also suggests that those virulence factors are specific to TIGR4 and R6. The above differences might have arisen because of the species-specific adaptation to their host particularly in the sake of defense mechanism.

Comparison of Virulence Factors Other than Capsular Polysaccharide Synthesizing Genes

In *S. pneumoniae*, the surface and cytoplasmic proteins such as pneumococcal surface protein A (PspA), autolysin (LytA), hyaluronate lyase (Hyl), pneumolysin (Ply), two neuraminidases (NanA and NanB), choline binding protein A (CbpA), pneumococcal surface antigen A (PsaA) and immunoglobulin A1 (IgA1) protease are already stated as the virulence factors (Jedrzejas, 2001; Rigden et al., 2003). The comparative results of the above mentioned sequences obtained from CMR, are given in Table 5. It provides more insight into the virulence factors of the strains TIGR4, D39, G54 and R6 of *S. pneumoniae*.

The virulence factors of TIGR4 are taken as reference and are compared with all other related sequences of the strains such as D39, G54 and R6, likewise the virulence factors of D39 are taken as reference and are compared with all the related sequences of the strains G54 and R6. Similarly the virulence factors of G54 are taken as reference and are compared with all the related sequences of the remaining strain R6 using the pairwise sequence alignment tool LALIGN, with default parameters (Alignment: Global; Scoring matrix: BLOSUM50, Gap opening penalty: -14 and extension penalty: -4), and all the results are comparatively shown in Table 5.

PspA is located in the cell wall of *pneumococci* and present in all *S. pneumoniae* strains (Jedrzejas, 2001). PspA of TIGR4 has ~53-63% identities with D39, G54 and R6 (Table 5). When we compare PspA in D39 vs. G54 and G54 vs. R6, the identities between those strains are nearly 63%. The above results indicate that nearly 50-60% virulence nature of PspA of TIGR4 exist in other strains D39, G54 and R6. But it is interesting to note that there is 100% identity between the PspA sequences of D39 and R6, thus the virulence nature of PspA is exactly the same.

Regarding LytA, Hyl, Ply, NanB and PsaA, all the four strains of *S. pneumoniae* have above 90% identities, thus the effect of the above mentioned five virulence factors is also similar and it also reflects on G+C percentage, protein length and gene length, but the location in their genomes varies and the similarities and differences can be noticed from the Table 5.

J Comput Sci Syst Biol

Volume 1: 103-118 (2008) -112

		Kesed	urch Article	JCSB/Vol.1
% Identity with R6	53.6 53.6 99.7 99.8 19.6 73.1 73.7 73.7 73.7 87.3	100 99.0 100 100 100 100 100	63.4 99.7 98.7 99.8 99.8 93.0 93.0 4.4 4.0 36.4 4	
% Identity with G54	62.5 97.5 98.14 35.9 35.9	63.4 97.8 9.02 9.8.6 9.10 7.9 8.8 4.4 4.4		
% Identity with D39	53.6 99.7 99.8 99.8 73.7 87.3 87.3			
Role category ***	– ო	NA	- 4 ω Λ ∞ ∞ Ĉ Λ ų	Ω 4 い Γ ∞ ∞ Ç Ü Ü
Gene Coordinates 5' 3'	118423 120657 1841361 1840405 287483 290683 1833311 1831896 1251631 1249409 1589236 1587143 1549466 1550395 1083881 1089895	128356 130215 1729601 1730557 285186 288389 1721457 1722872 1190890 1191621 1515745 1517838 1995044 1997149 1995044 1997149 1037492 1043383	2015436 2017565 1656972 1656016 137159 140395 1577243 1575828 1371522 136190 1371552 1369459 1331767 1332708 1969880 1975450	128356 130215 1723025 1722069 285103 288339 1715341 1713926 1518051 1514944 1518051 1514944 1518051 1514944 1518051 1518214 1989649 1987544 1470686 1471615 1029961 1035852
Gene length (bp)	2235 957 3201 1416 2223 2094 930 2092 6015 6015	1860 957 3204 1416 2309 2300 5892 5892	2130 957 3237 1416 2294 2229 2229 2220 5571 5571	1860 957 3237 3237 2094 2106 5892 5892
Protein length (aa)	744 318 1066 471 740 693 309 2004	619 318 471 243 697 701 309 1963	709 318 1078 471 980 980 697 739 313 313	619 318 1078 471 1035 697 701 309
G+C (%)	40.23 46.44 41.15 41.83 35.36 33.38 33.38 37.11 38.06	42.63 46.39 40.14 42.02 33.38 37.10 39.09	41.36 46.29 39.97 41.48 33.19 37.04 36.78	42.65 46.54 46.54 40.01 42.67 33.43 33.43 33.22 39.09
Virulence factors	PspA LytA Hyl Ply Nan-ptv* CbpA PsaA IgA1	PspA LytA Hyl Ply N.lyase-ptv** CbpA PsaA IgA1	PspA LytA Hyl Nan A Nan B CbpA psaA IgA1	PspA LytA Hyl NanA NanB CbpA PsaA IgA1
Gene ID	gi 15900059 gi 15901761 gi 15901761 gi 15901747 gi 15901180 gi 15901180 gi 15901997 gi 15901019	gi 116515876 gi 116515876 gi 116515977 gi 116515376 gi 116515419 gi 116516987 gi 116516387 gi 116515359 gi 116516343 gi 116516343	NT 05SP2202 NT 05SP1836 NT 05SP158 NT 05SP1546 NT 05SP1517 NT 05SP1511 NT 05SP1511 NT 05SP1516 NT 05SP1546 NT 05SP2154	gi 15902165 gi 15903796 gi 15903781 gi 15903781 gi 15903579 gi 15903574 gi 15903537 gi 15903537
Strain	TIGR4	D39	G54	R6

Journal of Computer Science & Systems Biology - Open Access

ISSN:0974-7230 JCSB, an open access journal

Research Article

JCSB/Vol.1 2008

- * Nan-ptv: Neuraminidase, putative
- ** N.lyase-ptv: N-acetylneuraminate lyase, putative

*** Role category functions

- 1. Cell envelope; cellular process pathogenesis
- 2. Mobile and extra chromosomal element function: transposon function
- 3. Cell envelope biosynthesis and degradation of surface polysaccharides and Lipopolysaccharides; Cellular processes: pathogenesis
- 4. Cell envelope: biosynthesis and degradation of murine sacculus and peptidoglycan
- 5. Cellular processes: pathogenesis
- 6. Cellular processes: toxin production and resistance; Cellular processes: pathogenesis
- 7. Unclassified: role category not yet assigned
- 8. Viral function: general
- 9. Cell envelope; cellular process pathogenesis cellular process: cell adhesion
- 10. Cellular processes toxin production and resistance; Fatty acid and phospholipid metabolism: degradation
- 11. Cell envelope biosynthesis and degradation of surface polysaccharides and Lipopolysaccharides
- 12. Unclassified role category not yet assigned
- 13. protein fate: Degradation of proteins, peptides and glycopeptides
- 14. Transport and binding proteins: Cations and iron carrying compounds; Cellular processes: pathogenesis; cellular processes:cell adhesion
- 15. protein fate: Degradation of proteins, peptides and glycopeptides; Cellular processes: pathogenesis
- 16. protein fate: Degradation of proteins, peptides and glycopeptides

All strains have different neuraminidase sequences except G54 and R6 (~90% identity). In the case of CbpA and IgA1 of the strain TIGR4, high percent identities (~73 and 87%) exist with D39 and R6 respectively, exactly identical (100%) between D39 and R6. But very less identities (~40 and 35%) exist with G54 combinations. It seems that the virulence nature based on cbpA and IgaA are similar among the strains TIGR4, D39 and R6 and differs in G54.

From Table 5, it is interesting to note that all the virulence factors of D39 are very similar to R6 (above 99% identities except NanA), and it confirms the fact that the avirulent strain R6 is the derivative of the strain D39 (Lanie et al., 2007). Based on the role category, all TIGR4 virulence factors come under pathogenesis related functions and it also says that TIGR4 has high virulence nature.

Functional Annotation of Hypothetical Sequences Relevant to the Virulence Factors

Prediction of virulence factors from the hypothetical sequences of *S. pneumoniae* has implications on the identification and characterization of the virulence mechanism. The present study predicted using VirulentPred (Garg and Gupta, 2008) that 4 hypothetical sequences of TIGR4 and 22 of R6, respectively, are virulence factors. All these sequences are listed in Table 6. The prediction is based on protein features, such as, amino acid composition, di-peptide composition, similarity search, higher order di-peptide composition, PSSM and cascaded SVM module of the tool VirulentPred. However, similar predictions are not possible at present with D39 and G54 as the sequence information of the latter is not fully available.

Among the 4 predicted virulence factors of TIGR4, only one sequence (gil15901572) is predicted in R6 as a hypothetical protein (gil15903627) and the functional region is predicted as Plasmid_Txe (PF06769). This family contains many hypothetical proteins and there is no homolog with other mentioned virulence factors. But in R6, it is interesting to note that among the 22 predicted virulence factors of hypothetical protein sequences, 8 different sequences (gil15902372, gil15903388, gil15903446, gil15902652, gil15902781, gil15903694, gil15903627 and gil15903771) with 7 different functional regions which are related to the already mentioned virulence factors of the strains R6 and TIGR4. Those virulence factors are hyaluronidase, Immunoglobulin A1 protease, capsular polysaccharide synthesis, pneumolysin, neuraminidase and choline binding protein. The above mentioned related sequences of TIGR4 and R6 except gil15903771 are compared in Table 7.

The hypothetical protein sequence, gil15903771 of R6 has 71 amino acids and its functional region is predicted as pu-

Research	Article
nescuren	AINCIC

JCSB/Vol.1 2008

S.	Protein ID	Protein
No.		Length
	TIGR4	
1	gi 15900762	177
2	gi 15900877	1039
3	gi 15901572	84
4	gi 15902036	255
	R6	
1	gi 15902135	385
2	gi 15902152	450
3	gi 15902269	65
4	gi 15902355	57
5	gi 15902369	149
6	gi 15902372	1767
7	gi 15902511	111
8	gi 15902652	337
9	gi 15902781	170
10	gi 15902826	177
11	gi 15902850	122
12	gi 15903009	368
13	gi 15903331	330
14	gi 15903388	202
15	gi 15903446	2551
16	gi 15903447	502
17	gi 15903627	84
18	gi 15903694	719
19	gi 15903697	243
20	gi 15903771	71
21	gi 15903873	64
22	gi 15903916	380

Table 6: List of predicted 4 and 22 hypothetical protein sequences as virulence factors from Tigr4 and R6 respectively.

tative cell wall binding repeat (42-60) using Interproscan (ID - PF01473). It is also found that the same functional region is repeatedly present in the known virulence factors such as pneumococcal surface protein A, autolysin and choline binding proteins of the strains TIGR4 and R6. Since many domain regions have been identified in the above mentioned known virulence factors of TIGR4 and R6, the regions are not explicitly given. But one can easily obtain those regions using the tool Interproscan.

Conclusion

We have compared the virulence nature of the strains, encapsulated TIGR4, D39, G54 and nonencapsulated R6 of *Streptococcus pneumoniae* using comparative genomics tools. From the whole genome pairwise alignment, we found that the stability of the gene order in the genomes of TIGR4 vs. D39, TIGR4 vs. R6 and D39 vs. R6 are relatively higher than the genomes of TIGR4 vs. G54 and R6 vs. G54. We are able to predict the possible structure of whole genome pairwise alignment of D39 vs. G54 from the alignments of TIGR4 vs. G54 and R6 vs. G54.

From the comparison on the capsular polysaccharide (cps) synthesizing genes, we found that, TIGR4 strain has more number of cps genes than other strains, which may indicate the high virulence nature of TIGR4. Many cps genes are unique to TIGR4, only few are in D39 & G54 and none in R6, which shows the high virulence nature of TIGR4. Further, the study on other virulence factors such as, pneumo-

Volume 1: 103-118 (2008) -115 ISSN:0974-7230 JCSB, an open access journal

						ŀ	Res	earch	Ar	ticle	?					JCS	SB/Vol
Functional region		Plasmid_Txe		Surface protein from Gram- positive cocci, anchor region	Ubiquitin-	acuvating enzyme E1		Thiol-activated cvtolvsin	, ,	YSIRK Gram-	positive signal	peptide			G5	Plasmid_Txe	
Domain position		5-84		1040-1077 88-127 1028-1065 88-127	289-544	2-231 2-129	289-544	67-84, 84- 100, 142-162	63-168	21-47	1-40	6-32	6-32	25-0	315-393 315-393	5-84	
Length	-	84		1078 1963 1066 2004	616 251	409	616	471	471	1035	701	1963	693 0004	ZUU4	1963 2004	84	
Name of Virulence Factors		Hypothetical		Hyl IgA1 IgA1	CapD	cps4J cps4K	cps putative	Ply	Ply	NanA	cbpA	IgA1	cbpA	Igal	IgA1	Hypothetical	
ID of known Virulence Factors of TIGR4 and R6	TIGR4	gi 15903627-VirPredR6	R6	gi 15902330 – R6 gi 15903086 – R6 gi 15900247 – TIGR4 gi 15901019 – TIGR4	1	I I	gi 15900046 - 11GH4	gi 15903781 – R6	gi 15901747 – TIGR4	1	1	gi 15903086 – R6	1		gi 15903086 – R6 ci15901019 – TIGB4	14	
Domain position		5-84		1727 – 1766 159-199 2513-2549	3-237			63-168		15-41	12-38				473-549	5-84	
Length		84		1767 202 2551	337			170		719	2551				2551	84	
ID of Hypo. Pro. Seq. of TIGR4 and R6		gi: 15901572		gi 15902372 gi 15903388 gi 15903446	gi 15902652			ai 15902781	-	gi 15903694	gi 15903446				gi 15903446	gi 15903627	
ID from Interpro scan		PF06769		PF00746	G3DSA:	3.40.30.720		PF01289		PF04650					PF07501	PF06769	

Journal of Computer Science & Systems Biology - Open Access Research Article JCSB/Vol.1 2008

J Comput Sci Syst Biol

Volume 1: 103-118 (2008) -116

Research Article

JCSB/Vol.1 2008

coccal surface protein A, autolysin, hyaluronate lyase, pneumolysin, neuraminidase B and pneumococcal surface antigen A of TIGR4 are closely related to those of the other three strains, which shows that the virulence nature due to these factors among four strains seems to be similar. But the virulence factors neuraminidase A, choline binding protein A and immunoglobulin A1 protease of TIGR4 differs from other strains of *S. pneumoniae*, which shows that these factors are responsible for the differences in virulence nature among four strains.

From the gene role category comparison, many genes of TIGR4 that are nearly same as in G54 and R6, suggests the basic complement of proteins required for certain cellular processes in the strains of S. pneumoniae. But many of the genes of TIGR4 which are notably different from the strains G54 and R6, suggest that these proteins are important for strain uniqueness and they may be involved in variations in pathogenesis. Since many hypothetical, conserved hypothetical, unknown and unclassified proteins exist among the dissimilar role categorized genes, it seems that many of these genes of S. pneumoniae have to be annotated and assigned functions of which some of them may also be responsible for the virulence nature. Further, we have also found that most of the virulence factors are same in D39 and R6 and hence also confirms the fact that R6 is the derivative of the strain D39.

In order to annotate the uncharacterized protein sequences (hypothetical and conserved hypothetical), the present study predicted 4 and 22 hypothetical sequences of the strains TIGR4 and R6 respectively of *S. pneumoniae* are of virulence factors. Among those predicted virulence factors, 1 and 8 different hypothetical sequences of TIGR4 and R6 respectively contain conserved sequences of known virulence factors such as hyaluronidase, immunoglobulin A1 protease, capsular polysaccharide synthesis, pneumolysin, neuraminidase and choline binding protein. These sequences also may be considered as desirable targets for therapeutics. The effort is to narrow down the search of virulence factors from all hypothetical sequences and this conclusion will be a reality only when it is experimentally proved.

References

- AlonsoDeVelasco E, Verheul AF, Verhoef J, Snippe H (1995) Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines. Microbiol Rev 59: 591-603. »CrossRef » Pubmed » Google Scholar
- 2. Avery OT, MacLeod CM, McCarty M (1979) Studies on the chemical nature of the substance inducing transformation of *pneumococcal* types. Inductions of trans-

formation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 149: 297-326. »CrossRef » Pubmed » Google Scholar

- 3. Bork P (2000) Powers and pitfalls in sequence analysis: the 70% hurdle. Genome Res 10: 398-400. »CrossRef »Pubmed » Google Scholar
- 4. Brown TA Jr, Ahn SJ, Frank RN, Chen YY, et al. (2005) A hypothetical protein of *Streptococcus mutans* is critical for biofilm formation. Infect Immun 73: 3147-3151.»CrossRef » Pubmed » Google Scholar
- Brückner R, Nuhn M, Reichmann P, Weber B, Hakenbeck R (2004) Mosaic genes and mosaic chromosomes - genomic variation in *Streptococcus pneumoniae*. Int J Med Microbiol 294: 157-168. »CrossRef » Pubmed » Google Scholar
- Dopazo J, Mendoza A, Herrero J, Caldara F, Humbert Y, et al. (2001) Annotated draft genomic sequence from a *Streptococcus pneumoniae* type 19F clinical isolate. Microb Drug Resist 7:99-125. » CrossRef » Pubmed » Google Scholar
- Dowson CG (2004) What is a Pneumococcus? In Tuomanen et al. (eds)The Pneumococcus ASM press Washington pp 3-14.
- Ferretti JJ, Ajdic D, McShan WM (2004) Comparative genomics of streptococcal species. Indian J Med Res 119: 1-6. » CrossRef » Pubmed » Google Scholar
- 9. Galperin MY, Koonin EV (2004) Conserved hypothetical proteins: prioritization of targets for experimental study. Nucleic Acids Res 32: 5452-5463. »CrossRef »Pubmed » Google Scholar
- 10. Garg A, Gupta D (2008) VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 28: 9-62. »CrossRef » Pubmed » Google Scholar
- 11. Gregory TR, DeSalle R (2005) Comparative genomics in prokaryotes. In Gregory (ed.) The evolution of the genome, Elsevier/Academic Press. London pp 585-660.
- Hoskins J, Alborn WE Jr, Arnold J, Blaszczak LC, et al. (2001) Genome of the bacterium *Streptococcus pneumoniae* strain R6. J Bacteriol 183: 5709-5717.
 »CrossRef » Pubmed » Google Scholar
- 13. Hughes D (2000) Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol 1: reviews 0006.1-0006.8. »CrossRef » Pubmed » Google Scholar
- 14. Jedrzejas MJ (2001) Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65: 187-207. »CrossRef » Pubmed » Google Scholar
- 15. Jothi R, Manikandakumar K, Ganesan K, Parthasarathy S (2007) On the analysis of the virulence nature of TIGR4

Research Article

JCSB/Vol.1 2008

and R6 strains of *Streptococcus pneumoniae* using genome comparison tools. J Chem Sci 119: 559-563. »CrossRef » Google Scholar

- 16. Lanie JA, Wai LNG, Kazmierczak KM, Andrzejewski TM, Davidsen TM, et al. (2007) Genome sequence of Avery's virulent serotype 2 strain D39 of *Streptococcus pneumoniae* and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 189: 38-51. »CrossRef » Pubmed » Google Scholar
- 17. Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, et al. (1998) Large-scale identification of virulence genes from *Streptococcus pneumoniae*. Infect Immun 66: 5620-5629.»CrossRef » Pubmed » Google Scholar
- 18. Rigden DJ, Galperin MY, Jedrzejas MJ (2003) Analysis of structure and function of putative surface-exposed proteins encoded in the *Streptococcus pneumoniae* genome: A Bioinformatics-based approach to vaccine and drug design. Crit Rev Biochem Mol Biol 38: 143-168. » Pubmed » Google Scholar
- 19. Silva NA, McCluskey J, Jefferies JM, Hinds J, Smith A, et al. (2006) Genomic diversity between strains of the same serotype and multilocus sequence type among

pneumococcal clinical isolates. Infect Immun 74: 3513-3518. »CrossRef » Pubmed » Google Scholar

- 20. Sivashankari S, Shanmughavel P (2006) Functional annotation of hypothetical proteins A review.
 Bioinformation 1: 335-338. »CrossRef » Pubmed » Google Scholar
- 21. Tettelin H, Hollingshead SK (2004) Comparative genomics of *Streptococcus pneumoniae*: Intrastrain diversity and genome plasticity. In Tuomanen etal. (eds) The Pneumococcus ASM press Washington pp 15-29. »CrossRef » Google Scholar
- 22. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, et al. (2001) Complete genome sequence of a virulent isolate of *Streptococcus pneumoniae*. Science 293: 498-506. »CrossRef » Pubmed » Google Scholar
- Wizemann TM, Heinrichs JH, Adamou JE, Erwin AL, Kunsch C, et al. (2001) Use of a whole genome approach to identify vaccine molecules affording protection against *Streptococcus pneumoniae* infection. Infect Immun 69: 1593-1598. »CrossRef » Pubmed » Google Scholar