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Introduction
The noise in stochastic system is due to random particle/

molecular interaction of the participating particles/molecules in the 
system (intrinsic noise) [1,2], and exchange of external fluctuations 
of the surrounding environment with the system such as thermal, 
environmental fluctuations (external noise) [3,4]. This noise, in 
general, is known to be a parameter that induces hindrance to the 
signal associated with dynamical variables of the system [5]. However, 
there are important constructive roles of noise in stochastic systems, for 
example, detection and amplification of weak noise, the phenomenon 
known as stochastic resonance [6,7], lifting of cellular expression at 
different distinct expression state [8], noise in gene expression can 
drive stochastic switching among such states [9,10], noise induced 
stochastic phenotypic switching to different new level in living cells 
[11], noise induce generation of coherent motion [12], noise induced 
synchronization of stochastic systems [13] that can be found in inter-
circadian networks via environmental fluctuations [14-16] etc. This 
noise parameter is also being used as a means of synchronizing or 
correlating behaviors of a group of biological systems such as group 
of biological cells in multi-cellular organism or group of unicellular 
organisms, i.e. quorum sensing in a group of bacteria via external 
environmental fluctua tion [17]. The study of the role of noise in 
realistic systems is of main interest especially in biological areas.

The complex processes in stochastic system can be well described 
by Master equation formalism (ME) which is based on every individual 
particle/molecular interaction involve that leads to decay or/and 
creation of particles/molecules in the system [1,18,19]. Since solving 
ME for complex system is difficult, there have been other simplified 
techniques to deal with processes in the system, for example, chemical 
Langevin equation (CLE) [20], noise induce deterministic equation 
(Langevin equation) [19,21] and Linear noise approximation [19,22]. 
Noise in the system described by ME can be well estimated using 
generating function technique [18,19,23]. The strength of the noise 
in the system depends on various parameters such as systems size 
V, population of molecules accommodated in the systems (N) and 
dynamical variables in the system [1,20]. For instance, the noise 

strength associated with single cell gene expression scales as N
-1 

of 
relative fluctuation amplitude [8] and in CLE it scales as N-1/2.

Noise, on the other hand, is a parameter similar to thermodynamics 
limit which can distinguish stochastic and deterministic systems, 
where stochastic system becomes deterministic when noise becomes 
negligible [20,24]. This pa rameter is an inherent property of most of 
the biological systems, and can be technically controlled by con trolling 
the noise term introduced in the system or con trolling the parameters 
such as system size, dynamical variables in the system etc. But in 
real practice, it is hard to con trol the internal noise which is already 
associated with molecular events taking place in real biological systems. 
However the role of noise could be of different varieties, different for 
different noise strengths and system properties. We study certain roles 
of noise in this work which could happen in natural system, and may 
unfold many interesting roles of noise in various natural systems. Our 
work is organized as follows. We first briefly describe stochastic model 
of biochemical net work followed by the analysis of Chemical Langevin 
for malisms in materials and methods. We then pick up two examples 
namely genetic and chemical oscillator, and study the role of noise 
numerically as well as analytically which are presented in results and 
discussions. Finally some conclusions are drawn based on the results 
we obtained in this work. 

Materials and Methods
The random interaction of molecules in a well stirred stochastic 

system leads the dynamics of the variables in the system to noise-driven 
stochastic process [1,19,20]. Out of two types of interaction, namely 
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reacting and non-reacting collisions [25], reacting interaction, which 
involves decay and creation of molecular species, plays major roles in 
the stochastic system is responsible for various stochastic functions. 
The complex reactions in the system in real situation can be reduced 
to elementary reactions where few reactants are involved [1,25]. If we 
consider the state of the system at any instant of time t is defined by a 
configurational state vector, ( ) [ ]1 2( ), ( ), , ( ) T

NX t X t X t X t
→

=  , where 
N distinct molecular species are interacting via M elementary reaction 
channels in the system of the following type,

1 1 2 2

1 1 2 2

k

N N

N N

a X a X a X
b X b X b X

µ

µ µ µ

µ µ µ

+ + + →

+ + +





                                                 

(1)

where, µ is the reaction number index: µ=1,...,N, aiµ and biµ are co-
efficient to define stoichiometric matrix νiµ=(aiµ-biµ), and kη is the µth 
macroscopic rate of reaction. The system evolves with various random 
reaction fired at random interval of time with decay or/and creation 
of particle/molecular species at any reaction event [1,18,19,25] which 
leads to the change in configurational state of the system. This allows 
to define a configurational probability ( ; )P X t

→

as the probability to get 
this state change in an interval of time [t,t+t]. Then the time evolution 
of configurational probability ( ; )P X t

→

obeys Chemical Master equation 
(ME) [1,18,19] given by,

'

 ( , ) ( , ) ( , )
  

P t P t W P t W
t → →→ →

→ →

→

→ →

→
→∂

= − +
∂ ∑ ∑

' '

'

X X X X
XX

X X X                         (2)

Where, {W} are transition probabilities to jump from one state, 
→

X  
of the molecular system to another state, 

→

X  during the time interval 
[t, t+∆t]. The ME in general provides detail stochastic description of 
chemical kinetics, but it is very difficult to solve for complex systems 
[19]. 

The chemical Langevin equation (CLE) formalism is one method 
to approximate ME to simpler continuous Markov type equations 
by keeping conditions which are applicable in natural systems [20], 
and the accuracy of this CLE is found to be more than those of other 
formalisms such as linear noise approximation [26]. The approximation 

can be done by allowing to define a function ( , )Q X t
→

∆  as the number 
of a particular reaction fired during an interval of time [t,t+∆t] with 

0t∆ > . This is followed by excellent approximations by imposing 
two conditions, firstly, imposing small ∆t limit such that the values of 

propensity functions ( )[ ]X tω
→

 of the reactions remain constant during 
[t,t+∆t], and secondly imposing large ∆t limit which in turn leads 
to ( )[ ] 1X t tω ∆



 . These two conditions allow Q to approximate to 
statistically independent Poisson random variable and then the Poisson 
random variable is replaced by normal variable with the same mean 
and variance. Both the conditions are true in natural practice for large 
population limit. Then linearizing the normal variable, and defining 

macroscopic molecular concentration vector, 1( ) ( ),sx t X t
V

→ → 
= 

 
 

where V is the systems size, we have general CLE,

( ) ( )( ) , , ,
s

s si
i i

dx t F v G v
dt

x ξ   = +   V



ω ωsx                                   (3)

where, ( ){ }
1

M
s s

i ij j
i

F v xω
=

=∑  t  i=1,2,…,N is the macroscopic 

contribution term and 
1/ 2

i
1

1 ù { ( )}
M

s
i ij

i

G v x
V =

 =  ∑ t  is the stochastic 

contribution term to the dynamics. 0 lim (0,1) /i dt iN dtξ →=  is 
uncorrelated, statistically independent random noise parameters which 

satisfy ( ) ( )' '( )i j ijt t t tξ δξ δ= − . The stochastic CLE (2) will become 

deterministic equation when 0ξ → , and equation (2) becomes, 

( )( ) ,
d

si
i

dx t F v
dt

 =  



ω dx                                    (4)

where, ( ){ }
1

M
s d

i ij j
i

F v xω
=

=∑  t is the deterministic function. If the 

stochastic and deterministic variables obtained from equations 

(3) and (4) are given by, ( ) ( ) ( ) ( )1 2, , ,sx  =  




Ts s s
Nt x t x t x t

and 1 2( ) [ ( ), ( ),..., ( )]d d d d T
Nx t x t x t x t=

 respectively then the noise 

parameter can be defined by ( ) ( ) ( )s d
i i it x t U x tη = −
 

i , where 

( ) ( ) ( )1 2, , , ,d d dU Ux xU xU  =  
  





T

N . The reason could be the 

stochastic variables are noise-induced variables, whereas deterministic 
variables are approximately noise free variables and non-linearity of 
both the CLE and deterministic equations. The time evolution of ( )tηi  
can be expressed by,

( ){ } ( ){ }
( )

( ) , ,

, ,

s d
i i

d
i

s
i

d t F v F v
dt

dUG v x
d

x
t

η

ξ

 = − + 

  − V





s di
i

i

x U xω ω

ω
                   (5)

The dynamics of ( )tηi  could be different for different stochastic 
systems and dependent on various parameters such as , ,  sx ξ  V  
etc. The role of intrinsic noise in stochastic system could be different 
depending on the nature of interaction of the molecular species, 
network topology and system size. The steady state solution in   r r rM Mδ ∅



can 
be obtained from equation (5) as,

( ) ( )

( )

*

*

, ,

, ,

s d
i i

s d
i i

F v U F

dG x v x
dt

   = −   

  + 
 

*s *d
i

i

x x

UV

ω ω

ω
,

where, * , ,s
i i

dF F *sx and *dx are steady state solutions. If U


is found 
to be constant then *dx in stochastic CLE is proportional to the 
corresponding *dx in deterministic system. 

We used standard stochastic simulation algorithm due to Gillespie 
[1] to simulate the biochemical reaction network model of stochastic 
system. The algorithm systematically takes into account each and every 
reaction events to allow transitions from one state to another along 
the trajectory of the variables by defining a joint probability density 
function ( ) ( ), ( ). τ µ τ χ µΩ = Π The reaction time and reaction number 
fired at that time can be estimated computationally by generating 
two uniform independent random numbers r1 and r2 to identify τ by 

1

1 1ln
ii

r
τ

ω
 

=  
 ∑

 and reaction number μ by 2 ii
f rµ ω= ∑ by imposing 

the relation 1

1 1i ii i
fµ µ
µω ω+

= =
≤ <∑ ∑ . Incorporating these two random 

numbers corresponding to the probabilities of finding reaction time 
and reaction number fired, the algorithm systematically calculate the 
state vector as a function of reaction time and one can find the temporal 
trajectory of the state vector.

The system size in the SSA can be associated by  
A

V V
N

= , where 
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NA is Avogadro’s number and V  is average system size. The factor V is 
incorporated in the SSA from the relation which connect microscopic 
transition rate or propensity function (ciμ) with macroscopic rate 
constant (k iμ), ciμ= k iμV

1-v
iμ [1,27].

Results and Discussion
We study two stochastic models, namely genetic and chemical 

oscillators in which the roles of noise could be contrast. We concentrate 
mainly on the role of the noise in these oscillators by implementing the 
methods describe above and its dependence on various parameters. We 
then present numerical results using stochastic simulation algorithm.

Genetic oscillator

We use the minimal reaction model of Vilar et al. [28] based 
on the auto regulation of the two genes, an acti vator of A protein 
and a repressor of R protein: A acts as positive regulator binding to 
A promoter and R to increase their transcription rate, whereas R 
acts as negative regulator by sequestering A [28,29]. The regulatory 
mechanisms of A and R incorpo rate activator genes, '

aD  and Da and 
repressor genes, rD′  and Dr , which involves mRNA of A and R, Ma 
and Mr. C corresponds to the inactivated complex formed by A and R. 
The detail description of the biochemical reaction network is given in 
Table 1. This genetic oscillator model could able to generate 24 hour 
period of oscillation in A and R proteins and therefore can be taken as 
circadian clock.

The trajectory of the population variables involve in the genetic 
oscillator model as a function of time can be traced by identifying the 

state vector ( ) [ ]1 2 9, , , TX t X X X=


 at any instant of time t. where, 
'

2 aX D= , X3=Dr, 
'

4 rX D= , X5=M5, X6Mr , X7=C, X8=A, X9=R.. The 
Master equation of the model based on the reaction network given in 
Table 1 is given by,

'( , , , ; )a aP D D R t
t

∂ …
∂

( ) ( ) ( )( )' '1 1, 1, ,; 1 1a a a a a aD P D D t D Aθ γ= + − + … + + +

( )' ' '1, 1, 1, ,; ( 1) ( 1, 1,...,; )a a r r r rP D D A t D P D D tθ+ − + … + + − + +

'

' '

( 1)( 1) ( 1, 1, 1,...,; )

( 1,...; ) ( 1,...; ) ( 1)
r r r r

r r r r r r mr r

D A P D D A t
D P M t D P M t M

γ

α α δ

+ + + − + +

− + − + +

' '( 1,...; ) ( 1,...; ) ( 1,...; )r a a a a a aP M t D P M t D P M tα α+ + − + −

 

( 1) ( 1,...; ) ( 1,...; )
( 1) (..., 1; ) ( 1) (..., 1, 1; )

r r

r a

ma a a M P R t
R P R t C P C R t

M P M t βδ
δ δ

+ − +
+ + + + + −

+ + +

' '( 1,...; ) ( 1,...,; ) ( 1,...,; )a a a a r rM P A t D P A t D P A tβ θ θ+ − + − + −

( 1) ( 1,...; ) ( 1)( 1) (..., 1, 1, 1; )a cA P A t R A P R A C tδ γ+ + + + + + + + − −
' ' ' '

' '

( a a a a r r r r r r r r mr r

a a a a ma a r r r a

D D A D D A D D M

D D M M R C

θ γ θ γ α α δ

α α δ β δ δ

+ + + + + + +

+ + + + +

' ' ,) )'.( . ,. ;a a a a r r a c a aM D D A RA P D D R tβ θ θ δ γ+ + + + +
                    (6)

The microscopic variables are connected to macroscopic variables 

via ( ){ } ( )1 .x t X t
v

=


  This Master equation of the genetic oscillator 

model can be reduced to a set of CLE and can be obtained following 

Gillespie’s approach [19] as given below,

( )1
2 1 8

2 1 1 8 2
1

A A

A A

dx t
x x x

dt

x x x
V

θ γ

θ ξ γ ξ

= − +

 − 

                                                                    (7)

( )2
1 8 1

1 8 3 2 4
1

A A

A A

dx t
x x x

dt

x x x
V

γ θ

γ ξ θ ξ

= − +

 − 

                                                                (8)

S. 
No. Reactions Description of the reactions Transition 

rate

Rate 
constant 
values

1. '   a a aD Dθ


Conversion of activator genes with 
A to activator genes without A.

'
1 a aDω θ= αa = 50 

2. '
a a aA D Dγ+


Activation of activator gene 
without A to form activator gene 

with A.
2

a
a

AD
V

ω γ= ' 500aα =

3. '
r r rD Dθ


Conversion of repressor promoter 
with R to repressor promoter 

without R.
'

3 r rDω θ= 0.01rα =

4. '
r r rA D Dγ+


Activation of repressor promoter 
without R to form repressor 

promoter with R.
4

r
r

AD
V

ω γ= ' 50rα =

5.
' '  a a aD Mα∅


Creation of mRNA of activator 
gene A activated by activator 

gene with A.  
' '

5 a aDω α= 50aβ =

6.   a a aD Mα∅


Creation of mRNA of activator 
gene A activated by activator 

gene without A.
6 a aDω α= 5rβ =

7.   a a aM Mδ ∅


Degradation of mRNA of activator 
gene A.  7 a aMω δ= 10MAδ =

8.
' '  r r rD Mα∅


Creation of mRNA of repressor 
promoter R activated by repressor 

promoter with R.
' '

8 r rDω α= 0.5MRδ =

9.   r r rD Mα∅


Creation of mRNA of repressor 
promoter R activated by repressor 

promoter without R.
9 r rDω α= 1aδ =

10.   r r rM Mδ ∅


Degradation of mRNA of 
repressor promoter R. 10 r rMω δ= 0.2rδ =

11.   r rM Rβ∅


Creation of repressor promoter R 
induced by mRNA of repressor 

promoter R.
11 r rMω β= 1aγ =

12.   rR Rδ ∅


Degradation of repressor 
promoter R. 12 r Rω δ= 1rγ =

13.   aC C Rδ


Creation of repressor promoter 
R by R. 13 aCω δ= 2cγ =

14.   a aM Aβ∅


Creation of activator gene A 
induced by mRNA of activator 

gene A.
14 a aMω β= 50aθ =

15.
'  a aD Aθ∅



Creation of activator gene A 
induced by '

aD .
'

15 a aDω θ= 100rθ =

16.
'  r rD Aθ∅



Creation of activator gene A 
induced by '

rD .
'

16 r rDω θ=

17.   aA Aδ ∅


Degradation of activator gene A. 17 a Aω δ=

18.   r cA D AR Cγ+


Activation of activator gene A to 
form complex C with Dr.

18 c ARω γ=

Table 1: The biochemical reaction network of genetic oscillator, description 
of the reactions, transition rates and values of the rate constants used in the 
simulation [27].
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( )3
4 3 8

4 5 3 8 6
1

R R

R R

dx t
x x x

dt

x x x z
V

θ γ

θ ξ γ ξ

= − +

 − 

                                                               (9)

( )4
3 8 4

3 8 7 4 8
1

R R

R R

dx t
x x x

dt

x x x
V

γ θ

γ ξ θ ξ

= − +

 − 
                                                                 

 (10)

( )5
2 1 5

2 9 1 10 5 11
1

A A MA

A A MA

dx t
x x x

dt

x x x
V

α α δ

α ξ α ξ δ ξ

′= + − +

 ′ + − 

                                              (11)

( )6
4 3 6

4 12 3 13 6 14
1

R R MR

R R MR

dx t
x x x

dt

x x x
V

α α δ

α ξ α ξ δ ξ

′= + − +

 ′ + − 

                                            (12)

( )7
8 9 7

8 9 15 7 16
1

C A

C A

dx t
x x x

dt

x x x
V

γ δ

γ ξ δ ξ

= − +

 − 

                                                              (13)

( )

( )

8
5 2

4 8 1 3 9 9

A A

R A R C C

dx t
x x

dt
x x x x x x

β θ

θ γ γ γ γ

= + +

− + + +
                                                 (14)

 
5 17 2 18 4 19

1 8 20 3 8 21 9 8 22

9 8 23

1
A A R

A R C

C

x x x

x x x x x x
V

x x

β ξ θ ξ θ ξ

γ ξ γ ξ γ ξ

γ ξ

 + + −
 
 + − −
 
 − 

 

( )9
6 8 9 7 9

6 24 8 9 25 7 26 9 27

1
R C A R

R C A R

dx t
x x x x x

dt V

x x x x x

β γ δ δ

β ξ γ ξ δ ξ δ ξ

= − + − +

 − + − 

                           (15)

where, V is the systems size. The constraints to be satisfied by the acti-
vator and repressor genes are given by, 1 2 1x x+ =  and 3 4 1x x+ = .

  
The 

CLEs reduce to deterministic equations when , 0iV ξ→∞ → , and 
noise term in stochastic system described by CLEs is proportional to 

1/ 2.V − The steady state solutions of the CLEs can be obtained by impos-

ing the condition, ( ) 0, 1,2,...,9.idx t
i

dt
   = = 
  

 For deterministic equa-

tions the steady state solutions for * *
7 8,d dx x  and *

9
dx  and are given by,

2

2 2
*
7 2

2

1
~

1

d R C R R

RA R MR
R

u
v vx

v u
v

ϕ
γ γ β α

γ ϕδ δ δ ϕ θ
ϕ

 + ′  
 + + 
 

                                               (16)

*
9 2 ~ 1d v ux

v
ϕ

ϕ
 + 
                                     

(17)

'

2
*
9

2 2

1
 ~  

1 1

R R

d R R R

R RR MR
R R

v u
vx

v u v u
v v

γ α ϕ
β θ αϕ

γ ϕ γ ϕδ δ θ θ
ϕ ϕ

  +    +
    + + + +        

            (18)

 Where,
( ) ( )' 2 '

2
A A A A C R R R R

A MA R MR R

u
β θ α α γ β θ α α

γ δ δ δ γ

− −
= − ,

( )''
C R R R RA A

MA R MR R

v
γ β θ α αβ α

δ δ δ γ

−
= +

and 
'

C R R
A

R MR

γ β αϕ δ
δ δ

= +  are constants. The above steady state 

solutions are obtained by taking terms upto of the order of A-2 and 
keeping the condition, discriminent ≥ 0 which gives the condition: 

2
'

2A A
q

g p
α α− ≤ , 

where, A A

A MA

p β θϕ
γ δ

= , 
2

2
C R R

R MR R

q γ β θϕ
δ δ γ

=

and C R R

R MR R

g γ β θ
δ δ γ

= . 

Now the steady state solutions * *
7 8, s sx x  and *

9
sx in stochastic system 

can be obtained by solving the CLEs in equations (7)-(15) and keeping 

terms upto of the order of 
2*

7
sx

−
   . The results are given by,

( )* * * 1
7 7 1 1 7 * *

8 9

, ,  ~ 1s d d
d dx x V U x

x xV
ξ ξ  Γ + Λ

+  
   

             (19)

( )* * * 2
8 8 2 2 8, ,  ~ 1  s d dx x V U x

V
ξξ  − Λ 

 
                   (20)

( )* * * 3
9 9 3 3 9, ,  ~  s d dx x V U x

V
ξ + Γ                (21)

Where, {ξi} of the terms involved in deriving certain equation are taken 

to be the same to simplify the expression. The vector U


 is found to 

be [ ]1 2 3
8 7, , 6, ,
5 2

T
TU U U U  = =   



. The constant expressions Λ and Γ are 

given by,

2

vH u II J uH
v

v u

ϕϕ
ϕ

ϕ

+ + − −
Λ =

+
                                                         (22)

' '
'

2 21 1

R

R MR

R RR R R R
R

R R R MR

V
v u v u

v v

β
δ δ

α θα θ α βα
γ ϕ γ ϕ δ δ
ϕ ϕ

Γ =

 
 
 + + +
    + +        

                (23) 

And,
'

' R R RC R
R

R MR R MR

H V
δ α βγ β α

δ δ δ δ
= +                                                    (24)



Citation: Brojen Singh RK, Indrajit Sharma B (2012) Complexity in the Role of Noise in Stochastic Systems. J Comput Sci Syst Biol 5: 016-023. 
doi:10.4172/jcsb.1000086

Volume 5(1): 016-023 (2012) - 020 
J Comput Sci Syst Biol       
ISSN:0974-7230 JCSB, an open access journal  

( ) ( )

''
'

' '

2
C R R RR R

R
MA R MR R

C R R R R C R R R R

R MR R R R MR

I
γ β θ αβ αα

δ δ δ γ

γ β θ α α γ θ α α β
δ δ γ δ γ δ

= + + −

− −
+

                                  

(25) 

( )

( ) ( )

'' '

' 2 '

2

2 2

2

A A AA A A A

A MA A

A A A C R R R R

A R MR R

J
θ α αθ α β α

γ δ γ

θ α α γ β θ α α

γ δ δ γ

−
= + −

− −
−

                                            (26)

The noise terms in steady state solutions in equations (19), (20) and 
(21) are dependent on deterministic steady state solutions, V and ξ. 

Chemical oscillator

The chemical oscillator model known as oregonator was devised by 
Field and Noyes [30] based on the criticism made by Tyson and Light 
[31] on the original Brusselator model which is two molecular species 
reaction model. The modified chemical oscillator model consists 
of three molecular species, X, Y and Z involved in the following five 
reaction channels which are given in the Table 2 with reaction rates.

The state vector at any instant of time t along the stochastic 
trajectories of the variables of the oregonator reaction model is given 

by, ( ) ( ) ( ), , ( )
T

S t X t Y t Z t=   


. Following the same procedure, the 

Master equation of this reaction model is given by,

( ) ( )

( )( ) ( )
1

2

( , ) 1 1, 1, ;

1 1 1, 1, ;

P S t k A Y P X Y Z t
t

k X Y P X Y Z t

∂
= + − + +

∂
+ + + +



 
( ) ( )

( ) ( )

3

4

1 1, , 1;
1 1 1, , ;
2

k C X P X Y Z t

k X X P X Y Z t

+ − − − +

+ +

( ) ( ) ( )
1 2

5 2
3 4 5

1 , 1, 1; , , ;1
2

k AY k XY
k E Z P X Y Z t P X Y Z t

k CX k X k EZ

+ + 
 + + − + −  + +
  

                                                                                                               (27)

where, {ki}, i = 1,2, … ,5 are reaction rate constants and A, B, C, D 
and E are constants in this model. The corresponding CLE of the 
oregonator model by approximating Master equation (27) and defining 

macroscopic variable { } 1( ) ( )x t S=


 t
V

 are given by,

 

2
1 2 3 4

2
1 1 2 2 3 3 4 4

( ) 1dx t k Ay k xy k Cx k x
dt V

k Ay k xy k Cx k xξ ξ ξ ξ

= − + − +

 − + − 

                                       (28)

1 2 5

1 5 2 6 5 7

( ) 1dy t k Ay k xy k Ez
dt V

k Ay k xy k Ezξ ξ ξ

= − − + −

 + − 

                                                      (29)

3 5 3 8 5 9
( ) 1dz t k Cx k Ez k Cx k Ez

dt V
ξ ξ = − + −               (30)

Proceeding in the same way as done in the genetic oscillator case, 
we calculated the deterministic steady state solutions ({ξ} →0) which 
are given by,

* 1 2 3

2 1 4

81 1
2d
Ak Ck kx
k Ak k
 

= + −  
 

                                                  (31)

* 1 4 2 3 2 3
2
2 1 4 1 4

4 81
4d

Ak k Ck k Ck ky
k Ak k Ak k

 
= − +  

 
              (32) 

* 1 3 2 3

2 5 1 4

81 1
2d
ACk k Ck kz

Ek k Ak k
 

= + −  
 

                                                     (33)

Similarly the steady state solutions in stochastic system are obtained 
by solving the CLEs (28)-(30) in the same way and are given by,

( )
'

* * ' * 1
1 1, ,  ~ 1s d dx x V U x L

V
ξ ξ 

+ 
 

                  (34)

S. No. Reactions Transition rate Rate constant values

1. '   a a aD Dθ


'
1 a aDω θ= 34 10−×

2. 2X Y k B
→

+
2 2

XYk
V

ω = 0.1

3. 3 2C X k X Z
→

+ +
2 3k CXω = 21.04 10−×

4. 42X k D
→

( )2 4
1 1

2
k X X

V
ω = − 21.6 10−×

5. 5E Z k Y
→

+
2 5k EZω = 21.3 10−×

Table 2: The biochemical reaction channels involved in chemical oscillator (or-
egonator), microscopic transition rates and the values of the macroscopic rate 
constants used in our simulations in both deterministic and stochastic systems.
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Figure 1: The plots of the dynamics of protein concentrations A and R for 
different values of system size, V=1, 20, 50, 100 and 1000 respectively. The 
parameter values are taken from Vilar et al. [3] for fixed point oscillation. 
Panels (a), (b), (c), (d), (e) and (f) show the variations of concentrations of 
A and R as a function of time in hours for various values of V. Panels (g), 
(h), (i), (j), (k) and (l) are two dimensional plots of A as a function of R for 
corresponding values of V.
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'

* * ' * 2 4
2 2 *
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2 9s d d

d

ky y V U y L
x VV

ξξ
  

+ +      
                               (35)

( )
'

* * ' * 3
3 3 *

3

1, ,  ~ 1
3

s d d

d

z z V U z L
V Ck x
ξξ

  
  + +
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where, the vector of proportionality constants for this oregonator 

model is given by, ( )1 2 3
3, , 3,18,
2

T
TU U U U  = =  

 



. The constant L is 

given by,
*

*

1
1

d

d

ex r
f ex

+
= −

+
, where f, e and r are also constants given 

by, 46f k= , 2

1

2ke
Ak

=  and 42 3 2

1 4 3 1 4

8 2
9 2 3

kCk k kr
Ak k Ck Ak k

 
= +  

 
. 

The two examples studied before indicate that U


~ constant for 
steady state solutions with approximations upto of the order of 0(ξ2). 
This could lead the CLE in equation (3) and dynamics of noise in 
equation (5) to the following expression,

( ) ( )( )  ~ , , ,
s

di
i

s
i i xdx t U F v G v

dt
ξ   +   V



ω ωdx
                             

 (37)

( )( )  ~ , ,i
i

sd t G v
dt

xη ξ  V


ω                                                   (38) 

We now present the stochastic simulation results of the biochemical 
reaction network of genetic oscillator for different values of system 
sizes, V by using SSA [1] and are shown in Figure 1. The results show 
that as V increases the fluctuation due to noise in the dynamics of A and 
R increases comparatively as shown in the figure. The populations of A 
and R reduce monotonically and the oscillatory behavior start vanishing 
as V increases as shown in panels Figure 1 (a)-(f). The panels Figure 1 
(g)-(l) show the two dimensional plots of A and R indicate the loosing 
of oscillatory behavior as V increases as the system goes from stochastic 
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Figure 2: The plots of time evolution of the populations of X, Y and Z for 
various values of system sizes, V=1,10, 20, 50, 100. The right panels are 
corresponding two dimensional plots of the dynamical behaviors.
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to deterministic regime, which is in agreement with earlier results [28]. 
We could see the drastic decrease in amplitude, destruction of 24 hour 
period and comparative increase in noise fluctuation as V increases. 
The dynamics of the variables tend to maintain least fluctuated sustain 
oscillation as V decreases (V≤13±3), above this the oscillatory behavior 
start getting destroyed and get transition from fluctuated to limit cycle 
oscillation to no oscillation regime as → ∞.

Similar results of temporal dynamics of X, Y and Z as a function of 
V for chemical oscillator which are shown in Figure 2. The left panels 
show the decrease in fluctuation in amplitude of oscillation of the 
variables and thickness in 2D plots in right panels of Figure 2 as V 
increases. The noise fluctuation becomes minimized around V~50±5 
and the oscillatory behavior goes to minimized limit cycle oscillation as 
shown in 2D plots in the right panels of Figure 2.

We next estimate the noise in the variable dynamics as a function of V 
by using the expression 

m
ση =  , where im X= , {Xi} = {A,R,C,X,Y,Z}, 

is the mean with ....  as time average and 22
i iX Xσ = −  , is the 

standard deviation. We calculated η for stochastic dynamics obtained 
by both SSA and CLE and time averaging between (50-300) hours which 
are shown in Figure 3 for genetic oscillator and Figure 4 for chemical 
oscillator respectively. In the genetic oscillator case, η for A, R and C 
in SSA are found to be decreased as V increases in the interval (1-145) 
hours, however η for R and C start increasing as a function of V for V > 
145 hours, but η for A remains almost constant. This behavior of noise 
might help in maintaining oscillatory behavior in stochastic regime. 
However, in the case of CLE, η decreases as V increases till V~8, 10 
and 12 hours for C, R and A respectively; then η remains constant as V 
increases. The ηs calculated using SSA for all variables are found to be 
larger than those calculated using CLE.

Similar calculation of η for chemical oscillator is done and the 
results are shown in Figure 4. The results of s of X, Y and Z due to SSA 
shows slow decrease in η as a function of V (1 < V < 50) then remain 
constant. The magnitude of η for Y is largest and that of Z is smallest. 
The η calculated using CLE for all variables are found to be smaller than 
those of the calculated using SSA.

The enormously decrease in amplitude of A and R are shown 
in Figure 5 (i). At the same time destruction of 24 hour period of 
oscillation of A and R as the function of V is shown in Figure 5 (ii). We 
also obtain that for large V (V> 13±3) the amplitudes become getting 
small and random in nature. However the time period becomes getting 
large and random in nature for large V (V> 13±3). This shows the 
destruction of rhythmic behavior for large V. The reason may be due 
to the noise which could able to maintain the rhythmic behavior in the 
dynamics of A and R in stochastic system.

The results of amplitudes and period of oscillations for X, Y 
and Z are different for chemical oscillator as shown in Figure 6. The 
amplitudes of these variables X, Y and Z found to slowly increasing till 
V≤ 50±4, then these amplitudes found to remain constant for V > 50. 
The time periods of these variables X (~0.51), Y (~0.48) and Z (~0.49) 
are found to be not much vary with V, but increase slowly till V≤ 50±4 
and remain constant for V>50.

The destructing or maintaining oscillatory behaviors of the 
variables as a function of system size could be mainly due to noise 
associated with the variables. The noise associated with the variables in 
genetic oscillator is found to be constructive in small system size limit 
(stochastic regime) which could maintain oscillatory behavior and 
destruct this oscillatory pattern at large system size limit (deterministic 
regime). The transition from fluctuated limit cycle limit to no 
oscillation limit as V→∞ supports this claim in genetic oscillator model. 
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The opposite function of noise, as we found in genetic oscillator, is 
obtained in chemical oscillator case supported by the transition from 
fluctuated limit cycle to normal (minimized fluctuations) limit cycle 
(sustain oscillation) as V→∞. This shows that the role of noise depends 
on different factors, for example topology of the network, the way how 
the molecules interact in the network, system size, strength of the noise 
associated with the variables etc.

Conclusion
The calculation of steady state solutions of the noise free functions 

of all variables in CLE is found to be proportional to the deterministic
steady state solutions. The function U



 is found to be constant in the 
two oscillators but with different values. The noise term in CLE is 
comparatively small as compared to that in Master equation.

The behavior of noise is found to be different in different 
systems and depends on various parameters such as topology of the 
network, system size etc. The noise in genetic oscillator is found to be 
constructive to maintain oscillatory behavior in stochastic system but 
destructive in deterministic system by destructing oscillation. This role 
of noise in chemical oscillator is found to be contrast as compare to 
genetic oscillator i.e. noise in stochastic system fluctuates the dynamics 
of the variables tending to destruct the oscillatory behavior, whereas 
in deterministic regime the oscillatory behavior is maintained stable. 
There are different interesting issues to be studied in such systems 
such as phenomenon of stochastic resonance, switching behavior in 
biological systems, means of inter-oscillator communication etc. These 
studied could able to highlight different interesting roles of noise in 
different stochastic systems, especially in biological systems.
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