MET activation drives resistance to cetuximab in head and neck cancer

Moshe Elkabets1, Ofra Z Novoplansky1, Mathew Fury2, Liz Cohen1, Limor Cohen1, Fabiola Cecchi3, Ben-zion Joshua4, Yuval Nachalon5, Aron Popovtzer5, Maurizio Scaltriti2 and Jose Baselga2
1Ben-Gurion University of the Negev, Israel
2Memorial Sloan Kettering Cancer Center, USA
3Nanomix, USA
4Soroka Medical Center, Israel
5Rabin Medical Center, Israel

Background: Innate and acquisition of resistance to cetuximab, an epithelial growth factor receptor (EGFR) blocker, is major problem in metastatic head and neck squamous cell carcinoma (HNSCC). Although cetuximab significantly prolongs the median overall survival in HNSCC patients, only 15% of the patients experience a partial response, which lasts only several months.

Objectives: Investigate the role of c-MET expression and localization in response to cetuximab, and elucidate the signaling pathway downstream of c-MET that is responsible for tumor cells survival and proliferation.

Methods: Genomic, transcriptomics, and proteomics profiling was done on cetuximab-sensitive (CetuxSen) and resistant tumor (Cetux Res) lesions obtained from a patient who had an exceptionally good response to cetuximab monotherapy. Immunohistochemisty, FISH, and qPCR were applied to confirm MET localization, copy number, and expression, respectively. IHC staining and analysis of MET expression were done on 20-cetuximab treated patients. Biochemical studies in vitro were conducted to uncover the molecular mechanism of resistance.

Results: MET amplification and overexpression was observed in the Cetux Res tumor compared to the CetuxSen tumor. This was accompanied by a change in localization of MET. In the CetuxSen tumor MET was expressed mainly on the cell membrane, while in the Cetux Res MET was observed in the cytoplasm, indicating for its activity.

In vitro studies verified that HGF/MET pathway activation is sufficient for conferring resistance to cetuximab mainly though reactivation of the MAPK pathway.

Conclusions: We show the first clinical evidence for MET-induced resistance to cetuximab in HNSCC. Evaluation of MET expression and localization may further improve decision making when treating with cetuximab.

Recent Publications

Biography
Moshe Elkabets is an Assistant Professor in the Department of Immunology, Microbiology and Genetics at the Ben-Gurion University of the Negev (BGU). He completed his PhD at BGU in 2011. He has two Postdocs from Harvard Medical School under the supervision of Dr. Sandra Mcallister and Jose Baselga. Then, he moved with Dr. Balsega to Memorial Sloan Kettering Cancer Center in New York. He has published 22 pre-reviewed papers, and currently his lab focuses in therapy of head and neck cancer.

moshee@bgu.ac.il