Prostate cancer (PCa) is the most commonly diagnosed cancer in males in the western world. It is frequently lethal when cancer becomes resistant to androgen deprivation therapy. At this stage, it is clinically described as castration-resistant prostate cancer (CRPC). The molecular mechanisms underpinning progression to this deadly stage are unclear; however, dysregulation of the androgen receptor (AR) has been strongly implicated. Aside from the AR gene locus, one of the best-established susceptibility loci for PCa is the 8q24 human chromosomal region. The 8q24 region is a gene “desert” that contains the non-protein coding gene locus PVT1, which encodes six annotated microRNAs (miRNAs). The role of these six miRNAs in PCa is unclear. My talk will focus on the role in PCa of one of the six PVT1-encoded miRNAs, miR-1207-3p.

MicroRNA-1207-3p in metastatic castrate-resistant prostate cancer

Biography
Olorunseun O Ogunwobi is Associate Professor in the Department of Biological Sciences at Hunter College. He is also a member of faculty for the PhD program in Molecular, Cellular, and Developmental Biology as well as for the PhD program in Biochemistry at The City University of New York, and he is an adjunct faculty member in the Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University. He focused on studying the molecular mechanisms of metastasis in solid organ cancers. Ongoing studies in his lab include examination of the biological mechanisms underlying racial disparities in solid organ cancers such as prostate cancer. Research in his lab has been funded by the National Institutes of Health, National Science Foundation, and New York State Department of Health. Dr Ogunwobi is an Academic Editor for PLoS One, and Adhoc reviewer for numerous scientific journals. He has published 38 peer-reviewed articles, and has one patent issued by the United States Patent and Trademark Office.

Notes: