8th European Chemistry Congress

June 21-23, 2018 | Paris, France

Preparation of carbon quantum dots decorated BiVO₄ quantum tube for enhanced photocatalytic performance under visible and near-infrared light

Xiufang Zhang, Guanlong Wang and **Jiayi Li**Dalian Polytechnic University School of Light Industry and Chemical Engineering, China

Photocatalysis has been regarded as a sustainable and efficient technology for removing refractory pollutants in water. However, the performance of photocatalysis is usually limited by the fast recombination of photoinduced electron-holes and the narrow range of spectrum absorption. In this work, the visible-light sensitive BiVO₄ quantum tube (q-BiVO₄) was decorated with the carbon quantum dots (CQDs) possessing unique upconversion fluorescence function for enhanced photocatalytic degradation of organic pollutants. Under visible light (λ >420 nm) and even near-infrared light (λ > 700 nm) irradiation, the CQDs/q-BiVO₄ composites displayed significantly enhanced performance compared with q-BiVO₄ alone for the degradation of RhBl. The CQDs/q-BiVO₄ with 2% CQDs loading exhibited the best performance, whose kinetic constants for phenol degradation were 2.4 times higher than that on q-BiVO₄. The outstanding photocatalytic performance of CQDs/q-BiVO₄ was ascribed to the quantum sized BiVO₄ and the dual function of CQDs, which not only served as the electronacceptor to separate the photoinduced electron-holes in q-BiVO4, but also improve the light absorption of q-BiVO₄ through converting the near-infrared light into visible light. This work provides new insight into designing high-efficiency photocatalyst for enhanced environmental remediation.

zhangxf@dlpu.edu.cn