4th Annual Conference and Expo on **Biomaterials**

February 25-26, 2019 | London, UK

Bioconjugation studies of GO/Fe₃O₄ nanocomposites hollow/porous magnetite

Amodini Mishra, Bijoy Kumar Kuanr and **Tanuja Mohanty** Jawaharlal Nehru University, India^{1,2}

In this paper, we have synthesized reduced graphene oxide/magnetite (rGO-Fe₃O₄) nanocomposites by chemical coprecipitation method for a comparative Raman spectroscopic study. The nanocomposites along with its pristine GO and Fe₃O₄ counterpart were modified covalently with a fluorescently labeled protein. The modification was confirmed using confocal fluorescence microscopy. The GO, Fe₃O₄ and rGO-Fe₃O₄ samples were characterized by different spectroscopic and microscopic techniques before and after protein conjugation. A significant enhancement in Raman peaks obtained in case of protein modified rGO-Fe₃O₄ nanocomposites compared to pristine GO and Fe₃O₄ explains active Surface Enhancement Raman Spectroscopy (SERS) effect. An unusual phenomenon of GO to rGO conversion and vice-versa was noted as a result of covalent protein attachment.

fatimafaria45@gmail.com