Longitudinal cardiac rotation abnormalities in children and young adults with end-stage renal failure undergoing hemodialysis: A pilot study

Sahar Sheta1, Lagies R2, Beck B.B3, Hoppe B3, Sreeram N3 and Udink ten Cate F.E.A3
1Cairo University Children’s Hospital (CUCH), Egypt
2University Hospital of Cologne, Germany
3University Hospital of Cologne, Germany

Background: Longitudinal cardiac rotation (LR) is a movement of the apex during systole and diastole, with the heart appearing to rotate in a clockwise or counterclockwise direction. In this pilot study, we hypothesized that LR abnormalities are present in children with end-stage kidney disease (ESKD) undergoing hemodialysis (HD). We also assessed the effect of preload on LR.

Methods: Twelve patients with ESKD (58% male; aged 17.5 ± 4.4 years) were prospectively studied. Four-chamber views were acquired 1 hour before and after HD. Data were compared with 12 controls. Speckle tracking imaging was used for assessment of LR (°), longitudinal strain (%), and mechanical dyssynchrony (septum-lateral delay).

Results: LR abnormalities were seen in 50% of patients (end-systolic LR < -3.00° or > +3.00°). In 4 patients, LR changed in the opposite direction after HD. LR abnormalities were not seen in controls (LR between -2.00° and +2.00°). Controls showed the highest mean longitudinal strain (patients: - 19.75 ± 1.81% vs controls: - 22.60 ± 3.00%, P < 0.0001). Longitudinal strain decreased significantly after HD (preHD: - 19.75 ± 1.81% vs postHD: - 17.41 ± 1.68%, P < 0.0001). Mechanical dyssynchrony was more pronounced in patients (patients: 140.4 ± 90.0 msec vs controls: 106.4 ± 68.9 msec, P < 0.0001), and increased after HD (preHD: 93.1 ± 84.6 msec vs postHD: 140.4 ± 90.0 msec, P = 0.003).

Conclusions: Patients with ESKD have LR abnormalities, impaired longitudinal strain and more pronounced dyssynchrony. Preload reduction acutely changed the direction of LR in ~ 30% patients.

sssheta@yahoo.com

Notes: