Thermodynamics of La and U in Ga-Al eutectic alloy and the separation factor of U/La in fused system Me(Ga-Al)/3LiCl-2KCl

V Smolenski1,2, A Novoselova1,2, V Volkovich2 and A Osipenko3
1Institute of High-Temperature Electrochemistry UD-RAS, Russia
2Ural Federal University, Russia
3State Scientific Centre-Research Institute of Atomic Reactors, Russia

Actinides recycling by separation and transmutation are considered worldwide as one of the most promising strategies for more efficient use of the nuclear fuel. The actinide – lanthanide separation efficiency can be estimated from the thermodynamic equilibrium constants and the activity coefficients. The formal standard potentials of $E^{\text{Me(III)/Me}}$ and $E^{\text{Me(Ga-Al)}}$ vs. Cl-/Cl2 reference electrode has been obtained by measuring the electromotive force of the galvanic cells at the temperature range 723-823 K by using potentiometry at zero current method on Autolab PGSTAT302N. The activity coefficients of solid β-La and γ-U in liquid Ga-Al metallic alloy were determined by expression:

$$\log \gamma_{\beta-\text{La}} = 3.7 - \frac{12465}{T} \pm 0.0 \quad (1)$$

$$\log \gamma_{\gamma-\text{U}} = 1.6 - \frac{4962}{T} \pm 0.0 \quad (2)$$

The efficiency of electrochemical separation of metals during electrolysis was characterized by separation factor. Equation for calculation of separation factor (Θ) for metals M_1 (uranium) and M_2 (lanthanum) in eutectic Ga-Al alloy is the following:

$$\log \Theta = 0.8 + \frac{3393}{T} \pm 0.0 \quad (3)$$

As a result of the present work the activity coefficients of lanthanum and uranium were determined in Ga-Al eutectic alloys between 723 and 823 K. Separation factors of the couple U/La was calculated and showed the large values of this process. Analyzing the obtained data showed the perspective to use this system in future innovation method for recovery of nuclear waste.

smolenski@etel.ru