Binding modes of teixobactin to lipid II: Molecular dynamics study

Yuguang Mu
Nanyang Technological University, Singapore

Teixobactin (TXB) is a newly discovered antibiotic, targeting the bacterial cell wall precursor Lipid II (LII). In the present work, four binding modes of TXB on LII were identified by a contact-map based clustering method. The highly flexible binary complex ensemble was generated by parallel tempering metadynamics simulation in a well-tempered manner (PTMetaD-WTE). In agreement with experimental findings, the pyrophosphate group and the attached first sugar subunit of LII are found to be the minimal motif for stable TXB binding. Three of the four binding modes involve the ring structure of TXB and have relatively higher binding affinities, indicating the importance of the ring motif of TXB in LII recognition. TXB-LII complexes with a ratio of 2:1 are also predicted with configurations such that the ring motif of two TXB molecules bound to the pyrophosphate-MurNAc moiety and the glutamic acid residue of one LII, respectively. Our findings disclose that the ring motif of TXB is critical to LII binding and novel antibiotics can be designed based on its mimetics.

Recent Publications


Biography

Yuguang Mu has more than 20 years of experience in the area of Computational Biophysics. His main researches focuses on research fields, MD simulation method and data analysis method development, DNA dynamics, DNA protein, DNA-counterions interaction study, peptide, protein folding, unfolding study, especially aimed at folding, misfolding mechanism which could lead to amyloid fibril, RNA dynamics and folding study.

ygmu@ntu.edu.sg