conferenceseries.com

Joint Conference

International Conference on ENVIRONMENTAL MICROBIOLOGY AND MICROBIAL ECOLOGY & International Conference on

ECOLOGY AND ECOSYSTEMS

September 18-20, 2017 Toronto, Canada

Breach of rhizobial host specificity and colonization of V. radiata root nodules by rhizobacteria

Maharshi Pandya University of Baroda, India

Legumes develop symbiotic relationship with rhizobia following complex exchange of signals. Regardless of high specificity of Symbiosis, isolation of *rhizobacteria* from surface sterilized root nodules has been reported. To explore how these *rhizobacteria* enter root hairs and colonize root nodules, we hypothesized that host specific *rhizobia* initiate the signaling process to form infection thread (IT), which is invaded by *rhizobacteria* to breach host specificity. To experimentally prove the hypothesis, fluorescently tagged predominant *rhizobacteria Pseudomonas fluorescens* and a facultative aerobe *Klebsiella pneumoniae* were coinoculated with native host nodulating rhizobia *Ensifer adhaerens to Vigna radiata* seedlings and root hair infection was monitored at 5 days post inoculation (DPI) using confocal microscope. and *K. pneumoniae* adhered to surface and base of root hairs and failed to enter root hairs independently but successfully colonized root hairs when coinoculated with *E. adhaerens*. Recovery and confirmation of inoculated tagged strains through confocal laser scanning microscopy and 16S rDNA sequencing validated nodule occupancy by test *rhizobacteria* at 50 DPI. This is the first study that addresses the fundamental question of how non-rhizobia invade root nodules. We also isolated eight non-rhizobia with predominance of gram positive *Paenibacillus* and *Bacillus* among other gram-negative species of *Klebsiella, Ensifer, Agrobacterium, Blastobacter, Dyadobacter and Chitinophaga* from field grown *V. radiata* root nodules.

maharshipandya140985@gmail.com

Notes: