Mathematical models versus physical mechanisms

Hans Deyssenroth
Germany

In physics, mathematical models verify observed phenomena with high accuracy but do not explain the underlying principles. Furthermore, are these mathematical models physically sound? Is it reasonable that mass can increase just by a transformation of coordinates? How can a particle behave like a wave? Remember, the mathematically correct epicycle model also led to incorrect conclusions in Physics in ancient times. Now is the time to study physical mechanisms e.g. in the Yokto range (10^{-24} \text{ m}), which have the potential to explain observations in the quantum world, rather than continuously extending mathematical models. Unfortunately, current theories are taken for granted and scientists are too averse to challenge accepted norms. Disproving the Theories of Relativity offers an opportunity to address this impasse and could motivate scientists to open their mind to other ideas. In this talk I propose an experiment, which could substantiate that the expected symmetry of observations for the Relativistic Doppler effect does not exist because the effect can also be interpreted as a geometric mean of classical Doppler effects. In this case the principle of relativity would not be valid, which demonstrates that the mathematical basis of the Theories of Relativity is incorrect. I will also present some ideas to explain these mechanisms.

Biography

Hans Deyssenroth studied Electrical Engineering at the TH Karlsruhe and Physics at the University of Basel. He worked as a Biometrician and led an IT department in the pharmaceutical industry. After retirement, he became actively engaged in challenging the validity of the Theories of Relativity.

deyssenroth@t-online.de