Green methodology for utility of arylhydrazonales as precursor for synthesis of biologically active heterocyclic compounds

Manal Al-Solami, Khadijah Al Zaydi, Nour Basodan
King Abdulaziz University, KSA

It is well known that heterocyclic rings in vitamins, coenzymes, porphyrins (like hemoglobin, DNA, RNA, and soon. The plant kingdom contains thousands of nitrogen heterocyclic compounds, Complex heterocyclic compounds are elaborated by microorganisms and are useful as antibiotics in medicine. Marine animals and plants are also a source of complex heterocyclic compounds and are receiving much attention in current research efforts. It is well known that the preparation of 2-arylhydrazonals as well as the chemical reactivity profiles and structures of these substances are given to the use of these substances in the synthesis of five- and six-membered heterocycles compounds has been studied by researchers to produce heterocyclic compounds on green chemistry principles. From green methods is ultrasound (US). Sonocheratry. There are many applications for the use of US in chemistry (Sonochemistry) such as synthesis, destruction of both biological and chemical contaminants, improved extraction, crystallization, electroplating, and new methods in polymer technology regularly. This study describes the synthesis of class of pyridazinone antibacterial by green method. Here we describe the synthesis of biological active heterocyclic compounds utilizing green methods like ultrasound and reaction under pressure. The reaction of arylhydrazonales with active methylene compounds in presence of base as catalyst afforded six-member heterocyclic compounds was described.

Biography

Manal Al-Solami a graduate student in the department of Chemistry science at king Abdulaziz University, Saudi Arabia.

mamnn24@hotmail.com