Wave scattering by many small impedance particles and creating materials with a desired refraction coefficient

Alexander G Ramm
Kansas State University, USA

The theory of acoustic and electromagnetic (EM) wave scattering by one and many small impedance particles of arbitrary shapes is developed. The basic assumptions are: a d, where a, is the characteristic size of particles, d is the smallest distance between the neighbouring particles, is the wavelength. This theory allows one to give a recipe for creating materials with a desired refraction coefficient. One can create material with negative refraction: The group velocity in this material is directed opposite to the phase velocity. One can create a material with a desired permeability.

ramm@math.ksu.edu