Correlation of oxygen defects with surface Lewis acidity and catalytic properties of hybrid MoO$_3$/SBA-15 catalysts

Jin An Wang1,2

1Instituto Politécnico Nacional, Mexico
2Universidad Autónoma Metropolitana, Mexico

There are many structural defects or lattice vacancies in the surface of solid materials. From the surface sciences and catalysis points of view, these cationic or anionic defects are active centers for reactant adsorption and surface reactions. Investigation on structural defects and their correlation with reaction activity may provide new insight into the understanding of catalytic behaviors. In this work, a set of MoO$_3$/SBA-15 mesoporous hybrid catalysts were characterized with a variety of spectroscopic techniques and their crystalline structures were refined with Rietveld method. Oxygen defect concentration, crystallite size, phase composition, surface acidity, mesoporous regularity and textural properties were reported. Both α-MoO$_3$ and β-MoO$_3$ phases coexisted but α-MoO$_3$ was predominated. Oxygen defects were created in the orthorhombic structure and its concentration decreased as MoO$_3$ content increased. All the MoO$_3$/SBA-15 catalysts chiefly contained a big number of Lewis acid sites originating from oxygen defects in MoO$_3$ crystals. In the absence of formic acid, the oxidation of 4,6-dibenzothiophene in a model diesel was almost proportional to the number of Lewis acid sites of the catalysts. In the presence of formic acid, 4,6-dimethyl dibenzothiophene (4,6-DMDBT) oxidation was significantly affected by the formation of surface peroxometallic complex and Lewis acidity. Formic acid addition could improve the oxidative desulfurization (ODS) efficiency by promoting peroxometallic complex formation and enhancing oxidant stability. Under the optimal reaction condition using the best 15 and 20 wt% MoO$_3$/SBA-15 catalysts, more than 99% 4,6-DMDBT could be removed at 70°C within 30 min. This work confirmed that 4,6-DMDBT oxidation is a texture and particle size sensitive and Lewis acidity dependent reaction. This work also shows that crystalline structure refinement combination with experiments can gain new insights in the design of heterogeneous nanocatalysts and help to better understand the catalytic behavior in the oxidative desulfurization reactions.

Recent Publications

Biography

Jin An Wang is a full Professor in Chemical Engineering at the National Polytechnic Institute in Mexico City, Mexico. He is a National Researcher of Mexico and a Member of the Mexican Academy of Sciences. He is the Co-Author of more than 160 scientific publications, five patents, Co-Editor of three books in “Advanced Catalytic Materials” and three special volumes in Catalysis Today. He served as Chair of the first to fifth International Symposium on New Catalytic Materials. He was a Visiting Professor at Universidad Nacional Autónoma de Mexico, Universidad Autónoma Metropolitana and Worcester Polytechnic Institute in USA. His research interest focuses on the synthesis of new catalytic materials, catalysis for petroleum refining and treatment, catalysis for clean fuel production and environmental catalysis.

jwang@ipn.mx