Activated carbon-doped with iron oxide nanoparticles (Fe$_2$O$_3$ NPs) preparation: Controlling size, shapes and purity

Settakorn Upasen and Naruporn Vasontarujiroj
Burapha University, Thailand

Inspired by the intensively studies of activated carbon used as high performance adsorbent materials, we prepared iron oxide nanoparticles (Fe$_2$O$_3$ NPs) and produced activated carbon doped with iron oxide nanoparticle (GAC-Fe$_2$O$_3$ NPs). The synthesis method was a facile chemical precipitation using sodium hydroxide (NaOH) as precipitant agent. The impact of varying the molar ratio of reactant and precipitant (1:1, 1:1.5, 1:2) and of varying precipitating temperature (50, 70, 90 °C) were explored. Production yield of synthesized Fe$_2$O$_3$ NPs and GAC-Fe$_2$O$_3$ NPs were also reported. The physical and chemical characteristic of the synthesized samples were examined by transmission electron microscope (TEM), Brunauer–Emmett–Teller analysis (BET), thermogravimetry analysis (TGA), Fourier transform infra-red (FT-IR) and ultraviolet-visible spectrophotometer. The smallest synthesized Fe$_2$O$_3$ NPs of ~10 nm (approximate size) with specific surface area of ~110 m2/g were obtained for preparing with the FeCl$_3$: NaOH molar ratio of 1:1 at 70 °C and with the FeCl$_3$: NaOH molar ratio of 1:1.5 at 90 °C. With higher FeCl$_3$: NaOH molar ratio and higher precipitating temperature, the synthesized Fe$_2$O$_3$ NPs formed more rugby shape with finer surface. By the chemical characteristic, we observed the impurity about 5-10 wt.% devoted for sodium salt due to insufficient purification. Minimal Fe$_2$O$_3$ NPs coated on activated carbon were about 75 wt.% for the synthesis at molar ratio of the FeCl$_3$:NaOH 1:1.5 and 70 °C. The Fe$_2$O$_3$ NPs production yield was about 45-60% and 75-80% for the synthesized Fe$_2$O$_3$ NPs and Fe$_2$O$_3$ NPs doped activated carbon, respectively.

settakorn@eng.buu.ac.th