Self-sensing of strain in a fiber glass/epoxy composite by built-in stripe of carbon nanotubes with Ag nanoparticles

Petr Slobodian, Pavel Riha, Robert Olejnik, Jiri Matyas, Romana Danova and Ralf Schledjewski
Tomas Bata University in Zlin, Czech Republic
Academy of Sciences, Czech Republic
Montan universitaet, Austria

Statement of the Problem: Strain sensing composite materials have attracted considerable attention for their unique characteristics exceeding conventionally applied materials. Between different solutions and various types of transducers available for these applications, piezo-resistive strain sensors are among the most investigated ones usually based on conductive polymer composites prepared by embedding of electrically conductive fillers as carbon nanotubes into a polymeric matrix. This principle can be used for monitoring of deformation or stress stimulus in elongation or compression. The responses are sensitive and reversible with sufficient durability in the dynamic loadings measured by a macroscopic electrical resistance change.

Methodology & Theoretical Orientation: In our contribution we introduce a strain sensing composite material composed of electrically conductive entangled network of Ag decorated multiwalled carbon nanotubes (MWCNTs) integrated into the glass fiber/epoxy composite. A vacuum infusion technique was used for the composite fabrication. The experimental results revealed that an integrated strain sensing exhibit long term electromechanical stability which was linked to the level of strain in the host glass fiber/epoxy structure. It has been proven that modification of pristine MWCNTs with Ag nanoparticles increase the sensitivity to applied strain. Simultaneously pre-strain stimulation was also applied to further enhance detection ability. The resistance sensitivity, quantified by a gauge factor, increased more than hundredfold for a pre-strained sensor with Ag decorated nanotubes in comparison with the value of about 5 for sensor with pristine nanotubes. This is a substantial increase which ranks this new material among strain gauges with the highest electromechanical sensitivity. The obtained data indicated also a reasonable stability of the measurement with no effect of load alterations on the sensor resistance changes. Additionally, the thermoelectric properties, Joule heating and antennal signal reception by MWCNT stripe will be mentioned.

Acknowledgement This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504) and with the support of the Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and the national budget of the Czech Republic, within the framework of the project CPS-strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409). This project was also supported by the internal grant of TBU in Zlin No. IGA/CPS/2017/002 funded from the resources of the Specific University Research. P. R. would like to acknowledge financial support from the Fund of the Institute of Hydrodynamics AV0Z20600510.
Recent Publications:


Biography

Petr Slobodian received the Ph.D. degree in polymer science from the Faculty of Technology, Tomas Bata University (TBU), Zlin, Czech Republic and the Ms. degree from the Brno University of Technology, Brno, Czech Republic. He is a Scientific Researcher at the Centre of Polymer Systems, TBU. He is the associate professor at the Faculty of Technology since 2008. He is author or co-author of 76 scientific articles all published in the impacted journals. His main interests are polymer composite materials, carbon nanotubes and their use in the organic vapor sensors, strain sensors and stretchable thermoelectric materials.

slobodian@utb.cz