Ten things you may not know about drugs that ruins life

Taiwo Ayedun
Narconon Nigeria Initiative, Nigeria

At every point, it seems that our youth who are future of our tomorrow are surrounded with insidious influences that seem to encourage or condone substance abuse. Movies, television, sports figures, movies stars and musicians – everywhere, there seem to be people who can use drugs and still be successful. How do we counter these influences so that we can keep our young people from falling into substance abuse and addiction thus destroying our future hopes? What we hear over and over is that educators are frustrated in their attempts to find a drug education curriculum that is simple, comprehensive and above all, effective enough to get desirable results. And in this context, “desirable results” means just one thing: fewer young people using drugs. That decision, coming from their own hearts, is stronger than any advice or counsel that comes from the outside. Constant awareness on the risk of using drug is one of the most effective choices for prevention of substance abuse among youth. Our success in reaching students is measured by the question, “Did your thoughts about using drugs change after hearing our presentation?” To date, we have received an overall 95% positive response to the program. 40% reported an increased perception of risk. 45% said their decision not to use drugs had been reinforced after hearing the talk on drug and substance abuse. Over 90% felt they knew more about drugs after the talk. Research has also proved that in every ten person that use drug for the first time nine got hooked or addicted that is the reason why we have to do everything within our reach to put end to this menace in our society.

narcononnigeria@yahoo.com

Synthesis and pharmacological activities of some novel N, N′disubstituted urea derivatives

Hulya Akgun, Bengisu Turgutalp, Hande Sipahi, Beril Kadioglu and Inci Deniz
Yeditepe University, Turkey

Cancer is a major worldwide health problem. The current treatments for cancer include surgery, radiation therapy, chemotherapy, immunotherapy, targeted therapy, hormone therapy and stem cell transplant. Chemotherapy has been a cornerstone treatment among these therapies. Thereof, the development of more efficient and less toxic anticancer agents is still an ongoing area of interest. Various proteins and enzymes play significant role in such processes as cell growth, metabolism, apoptosis and inflammation. Protein kinase is an important enzyme family among various proteins and enzymes that plays significant role in processes such as cell growth, metabolism, apoptosis and inflammation. Therefore synthesizing molecules that inhibit protein kinases has been an attractive area in pharmaceutical industry. Imatinib (Gleevec®) is the first protein kinase inhibitor which entered clinical use in early 2000s and over a hundred protein kinase inhibitors have reached to advanced clinical trials over the last decade. N, N’disubstituted ureas are a class of protein-kinase inhibitor. Sorafenib is one of the many structurally diverse multi-kinase inhibitors. It is approved by Food and Drug Administration (FDA) for hepatocellular carcinoma (HCC) and metastatic renal cell carcinoma (MRCC). Linifanib (ABT-869), in clinical trials, is another potent inhibitor of receptor tyrosine kinases (RTK), vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). Doramapimod (BIRB 796), N-pyrazole-N’-naphthyl urea compound with strong p38 mitogen-activated protein kinase (MAPK) inhibitor activity, has been developed for mitigating rheumatoid arthritis and Crohn’s disease. The aim of this study is to synthesize new diarylurea derivatives that may possess inhibitor effect on many kinases and are structurally similar to sorafenib.