The high power density, long life cycle and very short charging time make supercapacitors a desirable energy storage system. One of the limitations, however, is their low energy density as compared to the batteries. The best approach so far to overcome this problem is to design hybrid electrodes by combining the capacitor type and battery type materials. Such hybrid electrodes use carbon materials as a conductive backbone and the transition metal oxides as an electroactive component. As a result, a synergistically high performance is obtained which originates from the high conductivity and long life cycle of carbon materials and the high specific capacitance of TMOs. Herein, we report two hybrid ternary electrode systems by using graphene-CNTs and graphene-CNCs as conductive matrix and combining them with bimorph Akaganeite (β-FeOOH) and Manganese dioxide (α-MnO₂) nanoparticles respectively via a simple hydothermal self-assembly method. When used as electrode in symmetric and asymmetric supercapacitors (2V) in an aqueous electrolyte system, the hybrid electrodes gave an excellent energy-power profile, high specific capacitance and remarkable cyclic stability of up to 99.8% after 10,000 galvanostatic charge-discharge cycles. This high performance is attributed to a dominant capacitive charge storage mechanism and the well-structuring of the hybrid electrodes. This system approach can be useful in designing high performance electrodes for long life supercapacitor systems with high energy and power densities.

References


Biography

Syeda Wishal Bokhari graduated from Shanghai Jiao Tong University with an MS degree in Materials Science and Engineering. She was awarded the prestigious Excellent International Student Award (2016-17) and Outstanding MS dissertation Award (2018) of SJTU based on her excellent academic and research performance. She was offered many prestigious fully funded scholarships from the University of Manchester, University of Alberta, University of Melbourne, University of Auckland and the Tsinghua University. She has 10 peer-reviewed journal articles under her belt. Her research focuses on the development of graphene-based composites, transition metal oxides, 2D materials with applications in electrochemistry and energy storage.