A World Within: Exploring Marine Ecology

Microbial ecology is the study of microbes in the environment and their interactions with each other. Microbes are the tiniest creatures on Earth, yet despite their small size, they have a huge impact on us and on our environment. Microbial ecology can show us our place in the cosmos -- how life originated and how it evolved, and how we are related to the great diversity of all other organisms. The study of microbial ecology can help us improve our lives via the use of microbes in environmental restoration, food production, and bioengineering of useful products such as antibiotics, food supplements, and chemicals. The study of these bizarre and diverse creatures that are everywhere yet nowhere to be seen is fascinating and a pursuit that appeals to the curiosity and playfulness in us. Most types of microbes remain unknown. It is estimated that we know fewer than 1% of the microbial species on Earth. Yet microbes surround us everywhere -- air, water, soil. An average gram of soil contains one billion (1,000,000,000) microbes representing probably several thousand species. Estimated 1,000,000 bacterial species exist on this planet, according to the Global Biodiversity Assessment, yet fewer than 4500 have been described. The greatest genetic diversity of life comes from within the world of microorganisms, yet the least is known about them. Marine microbiology is the study of microorganisms and non-organismic microbes that exist in saltwater environments, including the open ocean, coastal waters, estuaries, on marine surfaces and in sediments, they have complicated identities marine microbiology deals with all very small life and life-like biological phenomena: non-organismic microbes, bacteria, Archaea, protozoans, single-celled algae and very small multicellular plants, fungi, and animals. Marine microbiology isn't just for the open ocean. It's also concerned with microbial communities in coastal waters and estuaries, where saltwater meets fresh. Marine microorganisms are additionally found on maritime surfaces, such as sea cliffs splashed with ocean spray, and in sediments. Marine microorganisms rarely exist alone. Rather, they combine into communities, where they often depend on one another for food. These communities join with other small life forms, including the larvae of many invertebrates and fish, to form the enormous living waves of plankton that marine microorganisms, from tiny filter-feeding invertebrates to gigantic whales, depend on for food. Many marine microorganisms are mix trophic, which means they can behave either like plants or like animals by switching between photosynthesis on the one hand, and devouring other microorganisms on the other.
  • Marine ecosystems
  • Microbial interactions
  • Functional diversity of microbial groups
  • Microbial diversity of hot vents and deep sea habitats
  • Protein and genetic expressions
  • Biosynthetic pathways of deep see hot vent microorganisms
  • Marine microbial resources
  • Bioactive compounds, pigments, fatty acids, enzymes, and antioxidants
  • Natural products application
  • Marine pharmaceutical pipelines
  • Marine microbes and their role in carbon fixation
  • Biogeochemical process in the sea
  • Modern marine industries and applications

Related Conference of A World Within: Exploring Marine Ecology

A World Within: Exploring Marine Ecology Conference Speakers