Biomass & Bioenergy

Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-based materials which are specifically called lignocellulosic biomass. As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, andbiochemical methods. Wood remains the largest biomass energy source to date; examples include forest residues (such as dead trees, branches and tree stumps), yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from   numerous types of plantsincluding miscanthus, switchgrass, hemp, corn, poplar, willow,sorghum, sugarcane, bamboo, and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).

 

Bioenergy is renewable energy made available from materials derived from biological sources. Though wood is still our largest biomass energy resource, the other sources which can be utilized include plants, residues from agriculture or forestry, and the organic component of municipal and industrial wastes. Even the fumes from landfills can be used as a biomass energy source. Biohydrogen is a potential biofuel obtainable from both cultivation and from waste organic materials. Though hydrogen is produced from non-renewable technologies such as steam reformation of natural gas (~50% of global H2 supply), petroleum refining (~30%) and gasification of coal (~20%), green algae (including Chlamydomonas reinhardtii) and cyanobacteria offer an alternative route to renewable H2 production. Steam reforming of methane (biogas) produced by anaerobic digestion of organic waste, can be utilized for biohydrogen as well.  Bioplastics are any plastic material that is either biobased, biodegradable, or features both properties. They are derived from renewable biomass sources, such as vegetable fats and oils, corn starch, or microbiota. Bioelectricity is the production of electric potentials and currents within/by living organisms. Bioelectric potentials are generated by a variety of biological processes and generally range in strength from one to a few hundred millivolts. 

The global market for Biogas production equipment like anaerobic digesters and landfill gas equipment is estimated at nearly $4.5 billion for 2013. The market is projected to reach $7 billion by 2018 growing at a compound annual growth rate (CAGR) of 9.4% over the five-year period from 2013 to 2018.

Any form of energy drawn from organic matter or biological sources is bioenergy. Biomass, biofuels, biogas etc. are considered to be various forms of bioenergy. Biomass is any organic material which has stored sunlight in the form of chemical energy while fuel derived from biological sources in a very broad sense is biofuel. Biogas is methane produced by the process of anaerobic digestion of organic material by anaerobes. It can be produced either from biodegradable waste materials or by the use of energy crops fed into anaerobic digesters to supplement gas yields. The solid by-product, digestate, can be used as a biofuel or a fertilizer. In search of new material solutions and keeping an eye on the goal of sustainable production and consumption, bioplastics have several (potential) advantages most importantly that they can break down in either anaerobic or aerobic environments, depending on how they are manufactured. Bioplastics can be composed of starches, cellulose, biopolymers, and a variety of other materials.

  • Sustainable Feedstock Development
  • Agriculture Biomass and Energy Production
  • Biomass and Electricity
  • Industrial Waste Biomass
  • Waste Biomass to Energy
  • Bio-hydrogen Production
  • Bioelectricity Production
  • Bio-plastics: Types and Uses
  • Bioenergy Conversion
  • Bioenergy Transition
  • Processes for Bioenergy
  • Bioenergy Applications
  • Next Generation Renewable Energy Technologies
  • Carbon Energy
  • National Bioenergy programmers: Economic, Political and Social issues
  • Bioenergy Supply Management Strategies
  • Conversion Technologies (Pyrolysis, Gasification, Biological Conversion)

Related Conference of Biomass & Bioenergy

Biomass & Bioenergy Conference Speakers